From mboxrd@z Thu Jan 1 00:00:00 1970 Return-Path: X-Spam-Checker-Version: SpamAssassin 3.4.0 (2014-02-07) on aws-us-west-2-korg-lkml-1.web.codeaurora.org X-Spam-Level: X-Spam-Status: No, score=-10.3 required=3.0 tests=BAYES_00, HEADER_FROM_DIFFERENT_DOMAINS,MAILING_LIST_MULTI,MENTIONS_GIT_HOSTING, SPF_HELO_NONE,SPF_PASS,URIBL_BLOCKED,USER_AGENT_SANE_1 autolearn=ham autolearn_force=no version=3.4.0 Received: from mail.kernel.org (mail.kernel.org [198.145.29.99]) by smtp.lore.kernel.org (Postfix) with ESMTP id DE4A4C4338F for ; Mon, 16 Aug 2021 09:34:32 +0000 (UTC) Received: from kanga.kvack.org (kanga.kvack.org [205.233.56.17]) by mail.kernel.org (Postfix) with ESMTP id 1A2AA61AFA for ; Mon, 16 Aug 2021 09:34:31 +0000 (UTC) DMARC-Filter: OpenDMARC Filter v1.4.1 mail.kernel.org 1A2AA61AFA Authentication-Results: mail.kernel.org; dmarc=fail (p=none dis=none) header.from=intel.com Authentication-Results: mail.kernel.org; spf=pass smtp.mailfrom=kvack.org Received: by kanga.kvack.org (Postfix) id 72E668D0001; Mon, 16 Aug 2021 05:34:31 -0400 (EDT) Received: by kanga.kvack.org (Postfix, from userid 40) id 6DF646B0072; Mon, 16 Aug 2021 05:34:31 -0400 (EDT) X-Delivered-To: int-list-linux-mm@kvack.org Received: by kanga.kvack.org (Postfix, from userid 63042) id 57E828D0001; Mon, 16 Aug 2021 05:34:31 -0400 (EDT) X-Delivered-To: linux-mm@kvack.org Received: from forelay.hostedemail.com (smtprelay0225.hostedemail.com [216.40.44.225]) by kanga.kvack.org (Postfix) with ESMTP id 2C97D6B0071 for ; Mon, 16 Aug 2021 05:34:31 -0400 (EDT) Received: from smtpin29.hostedemail.com (10.5.19.251.rfc1918.com [10.5.19.251]) by forelay01.hostedemail.com (Postfix) with ESMTP id AA36B18121402 for ; Mon, 16 Aug 2021 09:34:30 +0000 (UTC) X-FDA: 78480433500.29.456DCB9 Received: from mga09.intel.com (mga09.intel.com [134.134.136.24]) by imf02.hostedemail.com (Postfix) with ESMTP id 3134370080C4 for ; Mon, 16 Aug 2021 09:34:28 +0000 (UTC) X-IronPort-AV: E=McAfee;i="6200,9189,10077"; a="215827931" X-IronPort-AV: E=Sophos;i="5.84,324,1620716400"; d="gz'50?scan'50,208,50";a="215827931" Received: from fmsmga004.fm.intel.com ([10.253.24.48]) by orsmga102.jf.intel.com with ESMTP/TLS/ECDHE-RSA-AES256-GCM-SHA384; 16 Aug 2021 02:34:02 -0700 X-ExtLoop1: 1 X-IronPort-AV: E=Sophos;i="5.84,324,1620716400"; d="gz'50?scan'50,208,50";a="509639594" Received: from lkp-server01.sh.intel.com (HELO d053b881505b) ([10.239.97.150]) by fmsmga004.fm.intel.com with ESMTP; 16 Aug 2021 02:33:59 -0700 Received: from kbuild by d053b881505b with local (Exim 4.92) (envelope-from ) id 1mFZ0J-000QXs-8S; Mon, 16 Aug 2021 09:33:59 +0000 Date: Mon, 16 Aug 2021 17:33:22 +0800 From: kernel test robot To: Biju Das Cc: kbuild-all@lists.01.org, Linux Memory Management List , Mark Brown , Lad Prabhakar Subject: [linux-next:master 7482/8423] sound/soc/sh/rz-ssi.c:148:15: sparse: sparse: dereference of noderef expression Message-ID: <202108161716.IQnw1J96-lkp@intel.com> MIME-Version: 1.0 Content-Type: multipart/mixed; boundary="LZvS9be/3tNcYl/X" Content-Disposition: inline User-Agent: Mutt/1.10.1 (2018-07-13) X-Rspamd-Server: rspam03 X-Rspamd-Queue-Id: 3134370080C4 X-Stat-Signature: hjrnotfjq7iixznt7rup6bubnhdoy9ra Authentication-Results: imf02.hostedemail.com; dkim=none; dmarc=fail reason="No valid SPF, No valid DKIM" header.from=intel.com (policy=none); spf=none (imf02.hostedemail.com: domain of lkp@intel.com has no SPF policy when checking 134.134.136.24) smtp.mailfrom=lkp@intel.com X-HE-Tag: 1629106468-702709 X-Bogosity: Ham, tests=bogofilter, spamicity=0.000000, version=1.2.4 Sender: owner-linux-mm@kvack.org Precedence: bulk X-Loop: owner-majordomo@kvack.org List-ID: --LZvS9be/3tNcYl/X Content-Type: text/plain; charset=us-ascii Content-Disposition: inline tree: https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git master head: b9011c7e671dbbf59bb753283ddfd03f0c9eb865 commit: 03e786bd43410fa93e5d2459f7a43e90ff0ae801 [7482/8423] ASoC: sh: Add RZ/G2L SSIF-2 driver config: arc-randconfig-s031-20210816 (attached as .config) compiler: arceb-elf-gcc (GCC) 11.2.0 reproduce: wget https://raw.githubusercontent.com/intel/lkp-tests/master/sbin/make.cross -O ~/bin/make.cross chmod +x ~/bin/make.cross # apt-get install sparse # sparse version: v0.6.3-348-gf0e6938b-dirty # https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git/commit/?id=03e786bd43410fa93e5d2459f7a43e90ff0ae801 git remote add linux-next https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git git fetch --no-tags linux-next master git checkout 03e786bd43410fa93e5d2459f7a43e90ff0ae801 # save the attached .config to linux build tree COMPILER_INSTALL_PATH=$HOME/0day COMPILER=gcc-11.2.0 make.cross C=1 CF='-fdiagnostic-prefix -D__CHECK_ENDIAN__' O=build_dir ARCH=arc SHELL=/bin/bash sound/soc/sh/ If you fix the issue, kindly add following tag as appropriate Reported-by: kernel test robot sparse warnings: (new ones prefixed by >>) >> sound/soc/sh/rz-ssi.c:148:15: sparse: sparse: dereference of noderef expression >> sound/soc/sh/rz-ssi.c:148:15: sparse: sparse: dereference of noderef expression >> sound/soc/sh/rz-ssi.c:317:30: sparse: sparse: incorrect type in argument 1 (different address spaces) @@ expected struct rz_ssi_priv [noderef] __iomem *priv @@ got struct rz_ssi_priv *ssi @@ sound/soc/sh/rz-ssi.c:317:30: sparse: expected struct rz_ssi_priv [noderef] __iomem *priv sound/soc/sh/rz-ssi.c:317:30: sparse: got struct rz_ssi_priv *ssi sound/soc/sh/rz-ssi.c:335:30: sparse: sparse: incorrect type in argument 1 (different address spaces) @@ expected struct rz_ssi_priv [noderef] __iomem *priv @@ got struct rz_ssi_priv *ssi @@ sound/soc/sh/rz-ssi.c:335:30: sparse: expected struct rz_ssi_priv [noderef] __iomem *priv sound/soc/sh/rz-ssi.c:335:30: sparse: got struct rz_ssi_priv *ssi sound/soc/sh/rz-ssi.c:338:30: sparse: sparse: incorrect type in argument 1 (different address spaces) @@ expected struct rz_ssi_priv [noderef] __iomem *priv @@ got struct rz_ssi_priv *ssi @@ sound/soc/sh/rz-ssi.c:338:30: sparse: expected struct rz_ssi_priv [noderef] __iomem *priv sound/soc/sh/rz-ssi.c:338:30: sparse: got struct rz_ssi_priv *ssi sound/soc/sh/rz-ssi.c:340:30: sparse: sparse: incorrect type in argument 1 (different address spaces) @@ expected struct rz_ssi_priv [noderef] __iomem *priv @@ got struct rz_ssi_priv *ssi @@ sound/soc/sh/rz-ssi.c:340:30: sparse: expected struct rz_ssi_priv [noderef] __iomem *priv sound/soc/sh/rz-ssi.c:340:30: sparse: got struct rz_ssi_priv *ssi sound/soc/sh/rz-ssi.c:343:30: sparse: sparse: incorrect type in argument 1 (different address spaces) @@ expected struct rz_ssi_priv [noderef] __iomem *priv @@ got struct rz_ssi_priv *ssi @@ sound/soc/sh/rz-ssi.c:343:30: sparse: expected struct rz_ssi_priv [noderef] __iomem *priv sound/soc/sh/rz-ssi.c:343:30: sparse: got struct rz_ssi_priv *ssi sound/soc/sh/rz-ssi.c:359:30: sparse: sparse: incorrect type in argument 1 (different address spaces) @@ expected struct rz_ssi_priv [noderef] __iomem *priv @@ got struct rz_ssi_priv *ssi @@ sound/soc/sh/rz-ssi.c:359:30: sparse: expected struct rz_ssi_priv [noderef] __iomem *priv sound/soc/sh/rz-ssi.c:359:30: sparse: got struct rz_ssi_priv *ssi sound/soc/sh/rz-ssi.c:432:30: sparse: sparse: incorrect type in argument 1 (different address spaces) @@ expected struct rz_ssi_priv [noderef] __iomem *priv @@ got struct rz_ssi_priv *ssi @@ sound/soc/sh/rz-ssi.c:432:30: sparse: expected struct rz_ssi_priv [noderef] __iomem *priv sound/soc/sh/rz-ssi.c:432:30: sparse: got struct rz_ssi_priv *ssi sound/soc/sh/rz-ssi.c:488:30: sparse: sparse: incorrect type in argument 1 (different address spaces) @@ expected struct rz_ssi_priv [noderef] __iomem *priv @@ got struct rz_ssi_priv *ssi @@ sound/soc/sh/rz-ssi.c:488:30: sparse: expected struct rz_ssi_priv [noderef] __iomem *priv sound/soc/sh/rz-ssi.c:488:30: sparse: got struct rz_ssi_priv *ssi sound/soc/sh/rz-ssi.c:524:46: sparse: sparse: incorrect type in argument 1 (different address spaces) @@ expected struct rz_ssi_priv [noderef] __iomem *priv @@ got struct rz_ssi_priv *ssi @@ sound/soc/sh/rz-ssi.c:524:46: sparse: expected struct rz_ssi_priv [noderef] __iomem *priv sound/soc/sh/rz-ssi.c:524:46: sparse: got struct rz_ssi_priv *ssi sound/soc/sh/rz-ssi.c:546:38: sparse: sparse: incorrect type in argument 1 (different address spaces) @@ expected struct rz_ssi_priv [noderef] __iomem *priv @@ got struct rz_ssi_priv *ssi @@ sound/soc/sh/rz-ssi.c:546:38: sparse: expected struct rz_ssi_priv [noderef] __iomem *priv sound/soc/sh/rz-ssi.c:546:38: sparse: got struct rz_ssi_priv *ssi sound/soc/sh/rz-ssi.c:562:38: sparse: sparse: incorrect type in argument 1 (different address spaces) @@ expected struct rz_ssi_priv [noderef] __iomem *priv @@ got struct rz_ssi_priv *ssi @@ sound/soc/sh/rz-ssi.c:562:38: sparse: expected struct rz_ssi_priv [noderef] __iomem *priv sound/soc/sh/rz-ssi.c:562:38: sparse: got struct rz_ssi_priv *ssi sound/soc/sh/rz-ssi.c:563:38: sparse: sparse: incorrect type in argument 1 (different address spaces) @@ expected struct rz_ssi_priv [noderef] __iomem *priv @@ got struct rz_ssi_priv *ssi @@ sound/soc/sh/rz-ssi.c:563:38: sparse: expected struct rz_ssi_priv [noderef] __iomem *priv sound/soc/sh/rz-ssi.c:563:38: sparse: got struct rz_ssi_priv *ssi >> sound/soc/sh/rz-ssi.c:148:15: sparse: sparse: dereference of noderef expression >> sound/soc/sh/rz-ssi.c:148:15: sparse: sparse: dereference of noderef expression >> sound/soc/sh/rz-ssi.c:148:15: sparse: sparse: dereference of noderef expression sound/soc/sh/rz-ssi.c:150:9: sparse: sparse: dereference of noderef expression sound/soc/sh/rz-ssi.c:150:9: sparse: sparse: dereference of noderef expression vim +148 sound/soc/sh/rz-ssi.c 142 143 static void rz_ssi_reg_mask_setl(struct rz_ssi_priv __iomem *priv, uint reg, 144 u32 bclr, u32 bset) 145 { 146 u32 val; 147 > 148 val = readl(priv->base + reg); 149 val = (val & ~bclr) | bset; 150 writel(val, (priv->base + reg)); 151 } 152 153 static inline struct snd_soc_dai * 154 rz_ssi_get_dai(struct snd_pcm_substream *substream) 155 { 156 struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); 157 158 return asoc_rtd_to_cpu(rtd, 0); 159 } 160 161 static inline bool rz_ssi_stream_is_play(struct rz_ssi_priv *ssi, 162 struct snd_pcm_substream *substream) 163 { 164 return substream->stream == SNDRV_PCM_STREAM_PLAYBACK; 165 } 166 167 static inline struct rz_ssi_stream * 168 rz_ssi_stream_get(struct rz_ssi_priv *ssi, struct snd_pcm_substream *substream) 169 { 170 struct rz_ssi_stream *stream = &ssi->playback; 171 172 if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK) 173 stream = &ssi->capture; 174 175 return stream; 176 } 177 178 static int rz_ssi_stream_is_valid(struct rz_ssi_priv *ssi, 179 struct rz_ssi_stream *strm) 180 { 181 unsigned long flags; 182 int ret; 183 184 spin_lock_irqsave(&ssi->lock, flags); 185 ret = !!(strm->substream && strm->substream->runtime); 186 spin_unlock_irqrestore(&ssi->lock, flags); 187 188 return ret; 189 } 190 191 static int rz_ssi_stream_init(struct rz_ssi_priv *ssi, 192 struct rz_ssi_stream *strm, 193 struct snd_pcm_substream *substream) 194 { 195 struct snd_pcm_runtime *runtime = substream->runtime; 196 197 strm->substream = substream; 198 strm->sample_width = samples_to_bytes(runtime, 1); 199 strm->period_counter = 0; 200 strm->buffer_pos = 0; 201 202 strm->oerr_num = 0; 203 strm->uerr_num = 0; 204 strm->running = 0; 205 206 /* fifo init */ 207 strm->fifo_sample_size = SSI_FIFO_DEPTH; 208 209 return 0; 210 } 211 212 static void rz_ssi_stream_quit(struct rz_ssi_priv *ssi, 213 struct rz_ssi_stream *strm) 214 { 215 struct snd_soc_dai *dai = rz_ssi_get_dai(strm->substream); 216 unsigned long flags; 217 218 spin_lock_irqsave(&ssi->lock, flags); 219 strm->substream = NULL; 220 spin_unlock_irqrestore(&ssi->lock, flags); 221 222 if (strm->oerr_num > 0) 223 dev_info(dai->dev, "overrun = %d\n", strm->oerr_num); 224 225 if (strm->uerr_num > 0) 226 dev_info(dai->dev, "underrun = %d\n", strm->uerr_num); 227 } 228 229 static int rz_ssi_clk_setup(struct rz_ssi_priv *ssi, unsigned int rate, 230 unsigned int channels) 231 { 232 static s8 ckdv[16] = { 1, 2, 4, 8, 16, 32, 64, 128, 233 6, 12, 24, 48, 96, -1, -1, -1 }; 234 unsigned int channel_bits = 32; /* System Word Length */ 235 unsigned long bclk_rate = rate * channels * channel_bits; 236 unsigned int div; 237 unsigned int i; 238 u32 ssicr = 0; 239 u32 clk_ckdv; 240 241 /* Clear AUCKE so we can set MST */ 242 rz_ssi_reg_writel(ssi, SSIFCR, 0); 243 244 /* Continue to output LRCK pin even when idle */ 245 rz_ssi_reg_writel(ssi, SSIOFR, SSIOFR_LRCONT); 246 if (ssi->audio_clk_1 && ssi->audio_clk_2) { 247 if (ssi->audio_clk_1 % bclk_rate) 248 ssi->audio_mck = ssi->audio_clk_2; 249 else 250 ssi->audio_mck = ssi->audio_clk_1; 251 } 252 253 /* Clock setting */ 254 ssicr |= SSICR_MST; 255 if (ssi->audio_mck == ssi->audio_clk_1) 256 ssicr |= SSICR_CKS; 257 if (ssi->bckp_rise) 258 ssicr |= SSICR_BCKP; 259 if (ssi->lrckp_fsync_fall) 260 ssicr |= SSICR_LRCKP; 261 262 /* Determine the clock divider */ 263 clk_ckdv = 0; 264 div = ssi->audio_mck / bclk_rate; 265 /* try to find an match */ 266 for (i = 0; i < ARRAY_SIZE(ckdv); i++) { 267 if (ckdv[i] == div) { 268 clk_ckdv = i; 269 break; 270 } 271 } 272 273 if (i == ARRAY_SIZE(ckdv)) { 274 dev_err(ssi->dev, "Rate not divisible by audio clock source\n"); 275 return -EINVAL; 276 } 277 278 /* 279 * DWL: Data Word Length = 16 bits 280 * SWL: System Word Length = 32 bits 281 */ 282 ssicr |= SSICR_CKDV(clk_ckdv); 283 ssicr |= SSICR_DWL(1) | SSICR_SWL(3); 284 rz_ssi_reg_writel(ssi, SSICR, ssicr); 285 rz_ssi_reg_writel(ssi, SSIFCR, 286 (SSIFCR_AUCKE | SSIFCR_TFRST | SSIFCR_RFRST)); 287 288 return 0; 289 } 290 291 static int rz_ssi_start(struct rz_ssi_priv *ssi, struct rz_ssi_stream *strm) 292 { 293 bool is_play = rz_ssi_stream_is_play(ssi, strm->substream); 294 u32 ssicr, ssifcr; 295 296 ssicr = rz_ssi_reg_readl(ssi, SSICR); 297 ssifcr = rz_ssi_reg_readl(ssi, SSIFCR) & ~0xF; 298 299 /* FIFO interrupt thresholds */ 300 rz_ssi_reg_writel(ssi, SSISCR, 301 SSISCR_TDES(strm->fifo_sample_size / 2 - 1) | 302 SSISCR_RDFS(0)); 303 304 /* enable IRQ */ 305 if (is_play) { 306 ssicr |= SSICR_TUIEN | SSICR_TOIEN; 307 ssifcr |= SSIFCR_TIE | SSIFCR_RFRST; 308 } else { 309 ssicr |= SSICR_RUIEN | SSICR_ROIEN; 310 ssifcr |= SSIFCR_RIE | SSIFCR_TFRST; 311 } 312 313 rz_ssi_reg_writel(ssi, SSICR, ssicr); 314 rz_ssi_reg_writel(ssi, SSIFCR, ssifcr); 315 316 /* Clear all error flags */ > 317 rz_ssi_reg_mask_setl(ssi, SSISR, 318 (SSISR_TOIRQ | SSISR_TUIRQ | SSISR_ROIRQ | 319 SSISR_RUIRQ), 0); 320 321 strm->running = 1; 322 ssicr |= is_play ? SSICR_TEN : SSICR_REN; 323 rz_ssi_reg_writel(ssi, SSICR, ssicr); 324 325 return 0; 326 } 327 --- 0-DAY CI Kernel Test Service, Intel Corporation https://lists.01.org/hyperkitty/list/kbuild-all@lists.01.org --LZvS9be/3tNcYl/X Content-Type: application/gzip Content-Disposition: attachment; filename=".config.gz" Content-Transfer-Encoding: base64 H4sICP8sGmEAAy5jb25maWcAlDzfcxs3zu/9KzTpS+8hjSX/SDLf+IHa5UqslssNyZXkvHBU W0k1dWyPLLfN/fUfwP1Fcrlu7uauZwEgCIIgCIDY/vzTzxPycnr8tjsdbnf3998nX/cP++Pu tL+bfDnc7/9vkopJIfSEpkz/CsT54eHln3e74+3k8tfpxa9nb4+308lqf3zY30+Sx4cvh68v MPrw+PDTzz8losjYwiSJWVOpmCiMplt9/QZG739/u7//8vbr7e3kl0WS/Gcynf46+/XsjTOG KQOY6+8taNHzuZ5Oz2ZnZx1xTopFh+vARFkeRdXzAFBLNjt/33PIUySdZ2lPCqA4qYM4c8Rd Am+iuFkILXouAcKISpeVjuJZkbOCDlCFMKUUGcupyQpDtJY9CZOfzEbIVQ+ZVyxPNePUaDKH IUpInA024+fJwu7s/eR5f3p56rdnLsWKFgZ2R/HS4V0wbWixNkTCohln+vp81skmeIkSaaqc xeQiIXmrmzdvPJmMIrl2gEuypmZFZUFzs/jMnIldTP6Zkx7jk/888cFIOzk8Tx4eT7jEdlBK M1Ll2q7Hmb8FL4XSBeH0+s0vD48P+/90BGpDvFnUjVqzMonMUArFtoZ/qmjlbJ8LxcGJzl12 G6KTpbFYl2WHT6RQynDKhbzBXSfJMjJ1pWjO5i5fUsFBdSnt1oOhTJ5ffn/+/nzaf+u3fkEL Klli7UgtxcY5bA6GFb/RROOeRtHJ0t09hKSCE1bEYGbJqCQyWd742IwoTQXr0WAFRZqDKbl2 gZCWEYyKi5PSebXIlNXJ/uFu8vglWH04KAGzXdE1LbRyFWkP0arCU4BWPlCpPnzbH59jWl1+ NiVwFilLXIZwkAHDYA2RjbRIl3rJFksjqbJySOXbSLOugQjdiSuz9tDDnzEZAWyNkuSeVSK4 KkrJ1t0BEVkWndxn3Fm9pJSXGtZjXVnHuIWvRV4VmsibqNE3VANdJ2X1Tu+e/5ycYMWTHQjw fNqdnie729vHl4fT4eFrvzLNkpWBAYYkiYC5WLFw3KNK0ZsmFM4W4LW39gBn1udRITVRK6WJ VvElKBZV1w8swTn8ID5TIid46gbakEk1UcMthZXeGMD1q4Ufhm7BFh0frTwKOyYA4fLs0OaA hCgtSUKbiXyl9CiwXJIaPo+qwpe/cwOr+g+Xawuz+xI5NWy1hHk8L5ELvHDAuJcs09fT971h skKv4BbKaEhzHnoElSxpWvuF9hip2z/2dy/3++Pky353ejnuny24WVEE62zmQoqqVLFDD/eO KkFljvyVhivfc0Rw6QAkamzg/uUYrmTpGKqgegwFK09WpQBdofPRQsZvp1pDpNLCLi6yNnAu mQInAkc6IZqmwVXq4cx6Fp1F0pzEHcU8X8H4tb3UZRonEUKb+u+IeBBciRJcK/sMYZWQ6LDh /zgpEs9tvUJmRNw9hEMU/BHXTxAR1Cc1QsrBDTPcaucUWw32DrwBZ/UdGQYh9RXiQO1ZcING x0XSPAO1SYfJnChYSuVNVEEkH/wEiwuCuBqc8HKbLN0ZSuHyUmxRkNwNva28LsDezi5ALSEy csJ65oTcTJhKel6fpGumaKsuRxHAZE6kZK5qV0hyw9UQUisCjVKztWcmuDn2tszSyP6tEu5F kjApTVMaI7VqQyMzXUBi/UyTYJX745fH47fdw+1+Qv/aP8D9QcADJXiDQCTQ3wU+i85P/SCb lsua1zyMvUg9E1J5Na9DLSdhgaSAaMgnVt5hz8k8Zv/AICSD/ZAL2kYe0UFAlEGQkDMFDgqM XfABkw6/JDIFjx53D2pZZRmEkyWBGWGDIXUBbxc/qJpykxJNMO9jGUuIHwzX6VltcZ2q/WSr s0TpXqf2toTgNMvJAk5zVZZC+unUCpzkEFF7XwEpGSwW7hBjHbZrxF1sqyr3mEBkbWAyDXYP qR0miM5Z4E4QAOEoEzip4aSMsCWQdUhw3bBX4KKHBMsNhfjVFRkSmFW94H451rRBqAk53v5x OO1v8eocVBE6qvJ+d0K7facek3fzx93xrg4Ou8WZEtZm9Hx6to3ueUdCtiqgcSiUAPlVunJ3 c2R655JWBAfjCUhiltvg1zN32RDmjdVMUBCMApfK2z6jq4IaDhgnlUW6OfqVImWk8M4Dj13N yIcnfg5t54McM37dIxZrESxJ+AhDRKeA9sVFiFGfr68uBlB0ptdn/5Cz+j+ecLwy64tQPHtS 8TY1H1bj29sRTa9WI6L2NBcrX9xltaAWO+Ph7B1qejWmggz2QaEDbyKnAQtQEdwksUC2RWPR gfoywd0CKRkcuAW4MryxMDmBHCXO/eri1Q1MIbGT9LU9BOY5kCwCu0tV2STg6RDhLrod602N RJgRjsqGBHUZ51USvGdtwDyyAKQhi6qn82XF8gB4NgxbUeRQyryEKw0O6jwPBHWcwPDIdt6a FdUW/7lqTftDYNo1BTjsAYGX9XN/fwZ7WBJ6cTaigNWapGkdc17PLq+C811JCREz7lAs9Ph8 PXVFsQeRarIhsKlLXNf41sxjDBGDpT/IMU2q56ausr3x9fmK5++CSyHh1uBkaz6DCQm40+X1 dOokOp66vErnzuH+9m7/BBNDtDN5fMIJnHApkUQtg6hXQZKUOafgt4qXBuILmnu3mobbbkVv 4OhC4OyXQ20wRzMIGBgGUf0h7g6wS8hgdrhsMZoIeawANqfhgJWkOoqw17y9a5dCrIaXM9wK tgxl9BLT9CA+OJ/Nma36mFAMi46pIdeiLfjE5CjgKErUQOtDAzou0ppWlTTB+MoJSkRa5VRZ J4iJCQbfTuC1qIvcOUSpENb31ekchIFDlqzAeFNHPU2EWi8Rsww/2HKj3S70XiRi/fb33fP+ bvJnHT4/HR+/HO7rolNnhUgWdWFtPPgamzBo/Be77eo7EJ5hiuVagM1RFMe00DnMjR5jyWWj YQ1RMyhBrCon3ps3JZDu5wpiT8VgGz5Vnqm3+fhcLaLAukgdwDFmXUimb15BGT0984p0DQG6 gpG8HygSnuJbCrhKCTfBKNlmrkdxNrcBBzBKoDAEL0n8wkKC+j0HorJE3pTRQl65O54OuKUT /f2pqSi1pk2kZjgIk1csN8SyRcLZgvSkzrFRqVAxBM2YB+4sLxTF3RD+yZQJ8zcJYGsGfER7 TJjoq2COZwU6Jup8JQVf07xw9XbZo1c385Gtainm2afo0fKn7pSjiqlTFKg3Q5VwGVWFPeze C0KDt2XLGv8aLjp2A/ZKxwa7yGa0VRv9Z3/7ctr9fr+3z60Tm5efHAXOWZFxjc7PK9EkQXyJ v02Kvrmt26O7bKqjcROtGatEsnLkGNQUnEVDVpwRJ3StaGw1dql8/+3x+H3Cdw+7r/tv0Xu4 yU2dC7bMwVOX2qoNYi913SUSzdPYHHN318QbgGlyMc/8YzAb1EuKKalXNIKzJYNEH/OSQmi4 oryCkXIEbrXP8SrnDI9vKq8vzj5eOVl/7ELsK+kRvCH5htzE3HeUmtcFLyedp3B8Siptqrjy cpskp+Bewsyv3Q8p4CYMHkKT6DPr55DMAqzGITNQQnaqgf+HbY7nAqOD8s/ifxvw4WI2JmWc /8UPCQ90y+R/k+Sz0jHnPUZ//eb+vxdvQr6fSyHynuW8GmcZkJ5nIk+HawuobMQQfWOJkF+/ +e/5l8f7uzc+Tfdi6BwZO875CYI7vyKyjcphI1Zr3hjarvwCL0aPmBtZQza1q8ccyH2BpBKt f/By18ZvVRl0M1h/L4ocYpBlaUv5mYpMWWpaB64kd13huLfrD2VXAyv2p78fj39CLDj0ieCw VlS7/gp/Q6JKHAVUBdv6v8Cx8wDSDOk0sk1LLHYBt/gNAVqMXwwAx64TCIHAF8hYmQVfmEpd YmeOUiy7cadtR5fLGxuDw45wuJYXY1NlkELSWGUW7govhdccEpMi+tiinaCWSzfClSx1E5L6 t1kDI1NP3NZ1fQJgEpmnQSaZo3rL6sPZbPrJZdNDzWId5eVQ8LUrckqT2nQ6ZjXESFHFFZXn XiMC/Iy/txFN8niWv51dxviS0gnry6UoXENllFKU//IiBjNF3vxh373ADgpNvPcwh7a20lj2 QpJuCu9500aM0aWkSew5Ii0UVrAEti+5sYTmxIbgngl00PbPdTx+6umKmEdz8MFLyro5lp7F NDB7jGP20uIh+ikx9/UG21i9o4kN9ynwYuKuIwel2tqW73d46T6noeIRYhZKeFE+wtA6g1Pu DCvU0h2xVDE7/iRt81tHhb8h143vs0XqqhjhY/iS+ZLLrZlX6sb4r5PzT3ngpSen/fOpzf4b bz9ABQjXszurJFySlMUjm4QUcauKnYMNkzT3akotxGDHZQ+FX0Gdy4KwvyIAqfJmQMTWTiyd LfDoOTlWfaKn9hrlIvXzk4Yak3eaC4xFN0QWYBAxY+yosdAAC7FvxBDCSrpI50MRbHmo6QK0 JLYiF6FrI5RSjchmW8deEyiRKRk+yHXojaftnM0DFbUQY2sCQF6O4pKEjyP1yn++6dB2CeOO 0hGlhdggxn2W7BBYAGaF0tKt9bnYLtn5EarrN98OD8+n4/7e/HFy4tuOFCKBWItjh89p6m1b h4hsW5S7aoPHsWDD5whDiuo1gSBwQeUtbW3ahptdqV9mK+Z6kfp3uwQfyIq6I7hve6nhi3LE M6Cz+liOOA2WxTxs5uwv/AAvvmD1desAC7fI0wCwYjIEVkR6EiN8mXiNb43H3B0n2WF/j80F 3769PBxubW1/8guM+M/kbv/X4XbvxLrIR8vs/cf3Z8SfVTEeTog3VkVyFCi+ZJOlZTgIQIbN YrcxYsvi8vzcn9iCcEjICREzq4kRZlyuAwUjpNVdCK5nCKED7SvdbJMnSw19ZWENQc3OG1ps y1c0qM6zjSwuAxlq4FDkGvFhFrUPpT9eLuOtpD9oJk4upyBliPfRwtlgmXf15BuIAoKyfINa SGESWrcE+eFj85gT7drD7IuuMRoKqkh+rpsRlgsvnKR6qTGNbmKpNq5I7fom6fHwl1c7rZuB 3EMZ/hh2gAHQlrIgkvHiKaHLvKrHIElkWQgm1IuvGlDTAD4yxtDEvT3sGFXyIaS7CMIZEFeK DZX4KBvvZfTI8P79IeK+WW9M9rRMQnEgb42/v6LuuIqdFMRgnLJSATOsIWA5o2m2sS/PI+OV rub+3mKH9gBItPIBNCG+rg0T61AMiNxGpi2JYk5FxrGTKNAkoxi1tLqsHzbAodw+PpyOj/fY FHvXWbYnVabhn9Ozs9FdhOiBSENj2TGOx083BnlKh+i7l32eW2zV2sJCxnd5i2NHsetzcA+c jePRNjWLuicrAcGyAomIrJdVkVLsMuXhDnp43PNXlAYZHH6TMa44rI9Dilb0Duj58PVhszvu 7c4lj/CHenl6ejyenDqUPS8b/1wDwLgxLHJPJXm/3cZgNam3LgzUNb7W0nhAY8UlN6DShJSv UeFzsy5pcjW6bPxaaSHJ9ONFsIYWPBQPX2xYiR+lDGZurq7XVFe/ejz+DsZ/uEf0PlRtXy0c p6pPze5uj92aFt2fLPz2I7ZNCUlp4Xa/uFBrSyOoYC97BLbNDZTjIi3XMcV7hKG9/PZ+NqUR UCunZws1ZmQz/l1L3XNn3EF1zos+3D09Hh58vWKDne20DDxwA22azbPQQYMf9wvLLbTQc7di 7M3bSfL89+F0+0fcm7rXxwb+y3Sy1DQJmY6z6PLXbW6CiAFBPNopVibglVN3OTxhxN8ohICb IalJWDSfBg71hM1C397ujneT34+Hu6/+Q/gN1gVjUqRX72cfvXrhh9nZx9ijTy0wdqjU/Tpe rkVKFlRg+g6iw20TlE1EWJUnFd4jBB8gfb1VdQ/JkublyHM2xI6al9EyA8hXpCQffjtleWZM ctuNZT+oHIicHY7f/kZHdP8I5+DovKpu7Fa4kWgHsoFril/DOGHqFpLkbjan0bQfZT88qdfo SholgEA4z7EgGXtg7Aa0D2Gu8YYr6qpRpLAhuPsG3e4LhFubEVwAdRrIzCehRr71a8dKtrY3 s0PWc8aW4doOWrOiC69xuv5tSPLx/QDopVENTOWMRxj6+WAD49z9+qFl6jYotIOTZB7jaMia u0/YnEAwBztvzSLzdxiRmfXltsEs3uoUPzv154gvz07a73QR8qbnB7vwTR7zO3M9Nd6DgwVs vYyWi62OPhQsmYLzCj9M7of8n8DwDJ2zmOPgSxYe7wY0rLMNKNArNzFoVEuuJjq3KCBRTUAD jneVmD60X3K0eWuhgl8QkkrmFnQskOMXbzGEYjKLY6r5doDgOu08ddcn9LQ7PgdBPdDBTr63 HUbRXjPAzxN+dQ6hoKXxpnC7tkKUyF6DItOLj2cfRrCYa0OiXH9W5xDU3WGGcXCB2nvV6JFa br3tBwyejVLlr64SDo/9/iwidItKmbRbfdN02b2d+tN4LGzzqP1GJdoINqTHx2t8uw6FR3NX 2EQ+kD7SCtZusd3jCv6EOBW7rOrPhfRx9/B8Xxdq8t13v+0LdzpfgccNVh90FGbaK5H5H8Th byM3sV6Awhsos9TnpFSWeqdccSQY0ZwQZSBl2MvSGETdNodd+Pi5uhzcwJLwd1Lwd9n97hni rT8OT8NgzRp6xvz5fqMpTWwvrw8H/2FasCcMcLDvhsI2Fo5ZIfr3OSlWZsNSvTRTn3mAnb2K vQiOKszPphHYLAIDv5577yLdCniqdBpbGwRCsaCvRVeQXgenivCQD+zECAsyV7TQbqTxys7V Wdzu6Qnf8BogNrbVVLtb8N/h9gosTm5RhdjXEHqd5Y3iEfOqwU2L8ojgLZHIojztjSgFjyO7 ukQcvaCcFWxMLHyMsL1sI5Kp5HJ2lqSDZRVUW1T8qgQCrS4vz2KfM9jZk6FANrcYobemZtYS Yn0ZrBIyz9ZG2pz7X/a0/u4b/y01mDntDg/7uwmwai7t+MkueXJ5OR3IbKH4mW3GYl+dOTRB IwBi8MvDLCf+A7mHaLpL7deJ8e+lfXKhYyUSe+qTZTk7X80ur8LJEHPxIb+6GN9KVVKC7/Gx WqPFKz27DM6tyiUZ2OsABP8LYfgZjRaa5PXLm9th2WCptK3wiJ3OPvii2mtoxvUwi0oPz3++ FQ9vE7SEscq8VadIFs5b0TzBD0ggwzT8enoxhOrri970/t2q6uczyAb9SRESvN/bG6ygiAn3 rAE3hlFbydgd2JAO/p0PLlIRrqpiEUcKPTj8LWq2xVsMYvsxhyzJxjQLqC/S3d/vIPjY3d/v 760WJl9qx9zXdCJ6SSl+YeNL5yBi3sRFp/Fmt44MFo+fu0arER2RAGc5i84irIP2/y0+Q6om uHydKCHZ2D7WkmpO86gQnMg1zccCoVqCHL+ES85nbg23Z+BhhxPMZcLthr26ALEtyFjQYgky iK9ZlkQEWGdX07PmQTuyvm3sBdTRrsnyROcxGyFr5j2Adxi93X4s0ozHpMlUFAynZBtjhVno 5dlFBINxeUzd7r+mwVlleEJrQTF9jkmj+fnMwAJmMV5UeS3uLRwv/AgY71F8VIugBkXn3h7/ n7NnW3Ybx/FXztPWTNV0rSTf5Ic80BJtM0e3I9LHcr+oUt3Z7dRmelKdzG7v3y9BSjJBgvbU dlUnMQCSEC8gCAKglsSMasTu19Wpnhd+/eX7L3hla819ueIJxxv+kCImVgyJlmbtmRpwIV/b ZkpeRQiFBW018EdxOI8KlcaolTxu4XBQj4Qz2Ghc8ciLQu8k/6n3jtD+v1TPC2qOaCjYis+s rj3H1giJHoCHS2qi1oLN1a0oDpfbftjVzHdUHSiU/2b/zl60avfyd+s2TdwYQou2AHVofV6V r6sIUBIjX3Y5eKtXA8ZrZQIm5Rl81j19wxAc+GFKlJd54w1YSHGmt4CoYASaU3Xhh5j6ZJrA x2cAn28d75Gt8HyoC71bbV3H21I5s8E9PrSQ8EsobM/UQFZVELUrERACNyBQEAG10lfdaNRr e/iIAOWtYbUocEvTGnFhyHypfyPH4hbiQCXXO5mJh/cR4MPrTmwNBTcML5XQhNSneuzKNwFG NuT5bo/U4Bmltcl1vCqIEBqxjXEKWgzdo95rHl60AtTPwDNFPQIKWUiA1KQH0mdGynnOEJyv 2JMXYEd20IJR+tDCAyjWn7CvuQMG5wGpl8SFnNMuIbgkx7ibSCJNazgUdmUL6rVl1widyfQZ X7Y9mP/kqnpPMjfQudxkm2EsuxZ9mwOO+FK5FMgWX17q+oanbXdmjXJ3dSWOtTewBrQbBjdS sZD7VSbXCTpGGpVOn6AopvSuW7XyAm6yelEIlE7s3I2icjZyY+4uWq3qcJz5zyBARvVkjkvW lXKfJxnDvlJCVtk+SehMWBaZUYf7eWyUJtHnf8dyNyEO53S3I+CGj32ClM9zXWxXGzqkoZTp NqcvBc96hHAOIhBhAm7Bi24VTx0m0VG0vI6DyQ0EF93O4LsXw1i4Tg4osjxyZ84XmZsUh/MO zFfB7m7hejZkjmy/AzcBsOInViAr8ISo2bDNd1RUx0SwXxXDNqhvvxqG9ZaoT5RqzPfnjks6 985ExnmaJGtyC/e+eemYw04r/EG8q4HGvJ0d7Khl1KW2ZtK5d9XnPz99fxHgjfzPv5v0V99/ +/SHPoj/AJM2tP7yFVSXX7Vc+fIN/ulmWRwlMh3+PyqjJBQWJwiDLgit8xAYSDvnGMOLs6ut C6kVgKqAhHXemRcwvZIDIMhxOrMDa9jIKC3kAokrnDn+3rHG3cwnwHwjed84J3jQ5myJc+W3 NbsVUswmkWARmBQEdevI856J0qRGdjOUaSr8Cy4vPcjdE/N+VQBwc+uGr+jvfE0Mvfz432+f X/6ix/W//vby49O3z397Kcqf9BT+qxO9PW3c0mG2OPcWhvaeBUrfKi5oMg2w4XnZBrxvLIzf A7o/NPCqPZ1QFKWBygJCkuStWZz5zDereTJ/98bB3B+HPa/3bRIszJ8URkLyoQi8Egf9VzBK tghlj1nQxm8O5bW2qL5bGrtb5bwP9XrratKMOBu1gZs7N5OO0Wvi0AyZpXH0OJ75kGmCrPQ2 ov8zM9mr6NxJFny6pt9r+tinazTVYQwcYWJlGCum1r1Cotg9aArQe9dWNAHgOleaoHP9fXpX dbKHzxSgxSubQm6s5YcNSoU0E9ns4bM3Crk4ZlIr8K2vLaXDILKaydcPRHs9Nx43St1snswH 371fe98NgMWEj3sRTD8wJuQHWIn2Lkmj2IS81L44MxYJeSOGuS9qSTsfWUmhG8pofK31BSNN G349cSp4bqFYVAsfQc08vQOvHn99p7JH39+JVd37q7gGn883v18uR3ku/FVkgf5+OKO0GleM itihqComE1iMVahOBW6NCwqlyJkWuNZOfAlV3/pDCEIdq6XikdLVbd+gnXkBLXltgq1xWKX7 1O+1o5/K3YViL3Er3rtA4DdCYW1gBrOUvPezrKL0shZ0qzerItcLLItiwDtpMieA6coEIaYx 2il4TbGT/JBuI1QQ2mUotmt/87nT1ILy6p86pA+/vesp7ymfBNzU4hRvevvWw5lmebQT3yqG jtULcN6DPKlwLOgbEDtBitV+82dUGEJf7Hdrr7FGdit/tK7lLt37g+tde1odrKb3o67OkySN cXI4Eh+9pCpCetGZV1K0mrr11+m82d99WxGz5wAw9iXzG9VQffqW1xDMa4KWVRcWaCOeCrxs NcrlCU6fvq/0lK320ELitL4nLZ1AY5LroS42Z1k886wZ1vGn/p8vP37T2N9/ksfjy++ffnz5 788vXyB38H98+sU5K5m62BlJCQDV7QEeD6lMQE8l9CaSeAxAoUeC1uBFjcwABlbwd0ofNDgT 1uHs1wB7a3vx5rG3eEK4QA0p0m02eGCjUc3fiL9BiiqLZOME7JEK1KzRdJ+Vw5rS2Q4m14mj SdrcJ4H2McGns8Ejz8WJ0ij/oAYJqfrgBYKAuZIan8l45xm7inoUswV7qQeg8LpNJNgV0J1Z C0QrGgeOxo6ImZMf3C2X85AcOsKaebxIKjEbpJ54SVf79ctfjl/++HzV//81PIdqnZRDmP29 kRkytt6EWBCaDcoateCbVt5cKfCQk7m0PsVaHdt1NRI41HMaDXo+9kVDes1CShXr+exmvgEg mDsxqGINE1gEQZJpatwAo5eTPpX2foEJbCL65aWhtTGfUJRqt0sTypgFpAadbTLM7wwNVwzC 9sU73IU8qXrh12uD+b/9nQ6gWsbxLEk4DTVVw/MalTudEYWCU4vqb44ag/C2zcTFnbn/xWf+ vNNlq6UIZTJUZ8i+4Lr4lVjpg/n3zpuy7cdV0dLRaw4NK1mnOBnN7BCdODYKcpWuUtr86Bar 9EFX6NppVwxEqXhLnYEmI5ySPPKNrGY/kyURDRL2+meepin0JWmu1iVdXWqKsWlqePzMmRd1 qfe5Q8BXPKRxwXqvcBAMv11Yo3CoD3uLbhBuyZ7OmeaSwBQiJ5dDdOhbViJPicN6jX7YIFlI 8MwrXqgAZ/IkPsC7+6nxKdcizJ3XGnryIM3gDEvR4PgiJU5tQ1+PQEHKqnI41a4uaX4Sfhf2 XQJ8eamrxE8aNZDIpRftO9UOII+Viahuj0eIwwnKmqvDZ0OnRwV8Px4PXegdwtxoFPhl5M/5 avKBuZwYXEfnKIBtjVUDL5mexLbfKBYL9i4ulKLi0tjzgGuotQcEhW7i7tAxJe8eZvyaqGn9 fgyhU4pQk9nFad5lTZ/YHAz3JplLadJYUipwMUDcMM4bVu8T8gxeohnuVF+6V1YAV5cKO9CU PEuTNTWvZ1L351hfRQBC8UwW1rAuoAOYni5a09GLzMvUeRXNoW3KMV87d4j6c9PEWau6lk22 RZHKRqYOokcyxv1+nPWhrDLnl946S/8BoRkWGAmoweP1peJP9y/+M/gMPZ7LR9brLRTd+x2V Xh60yeWoThZHfjO8pwJZJlw9150G4Kt3rN1NCCDd26wDOECzRAPd4CRYoxmmGNNlQNoWo+Cu OewOx224XF8+CiUvweAe6/ePaT5Els+pbU9+9v+QagkmezwI5wu78kALn5DG9e1x+VrAI5Dt Ea3ZjzXN3qs+yOJ1T7VK+H+SZJqGNe3TqQgcRp5s8L/j+Zy1n8tdM/eRs6qJjVXDVDQPg0vG IYnj811M/7Nvm7Z+so+5Kn5jbAq6UxutikICQ09ZcIu9i9I9DRi7S6l1Pefo2hVzeYq/9pXa AHUNbUG2OOUJ5c1Jby7oiQC9Bs9oWt44RM0exZP53PFGwpNLEQatRfJxFVqDrMCd887OW8F2 iSt5JgC+D5+BOHmSjd1E2lJfx0agL12ybbKmpR1kbFHckeq5Pn0XHf6t2jYAjB2WajPYvNij rsKPGPPI8tREszvQsa1KSEpobsncmvs83e4f93OvJ5K9hpn3ofNoJ9u9FvZ+eLYmIJUIybVD EwQFSDh/+K25BTh/e1JlW7H+qP/HWyl92QFJvWBSuZcUCww8JGNsiIo9mfBSuD0o5D5BbxFo SLqn9lO3ilp6gYjFPqW0o2l7Mvhi72gpvBN4azYkqWuI1G1MEKcdDVuTvleoowsIaMSHBtlA RDiZRrcxHhPSVwLn2pQR4aguVcOO751pyeEgM3W6BLem7aSb1hHu7IbK1/rv0OhtnlOr4ueL ip0sZhpX9RRzpIAneByEr98oSJskrybhsSQ3/YkC1VZ0rseGqvDLXg5772Q4nENwFT8joWh/ j9dNiufzAl9FcjJNBCb+3UQvP6MSTUgXUrHmRrKR2l3g2RBaf7rnVH3M7nQsS7oRs7+Ijkw/ cr55CeAA4N7YXjv3keuKl6PqxekESSRcxFEMvJxAjqgL719qIV40WTT8ECw/qGYT2TGehsqv nZVwd3um3KFnEw+uafKFPmDobIzxoEW9WafrJIDaqH8PCI4lPnsanK/zPPVZRAQ7W468F6nH 4nZqIAWD15pNS+4NVCEKfVTymZjO0ZE2YKUHXy6KrvIbrQbl12xjXoYru0U/sILbWJUmaVpE GJj0eG/AJ2CanGhEng+Z/s/nqOZaNdU6zwgpDOnmjJ7vVTpr9UF1C0IFY+iSgPLuVdmqFlap 17GNOdwzr31IXFmsN6P6yPTeN4RIEsFUnqyCKfc280LwOimEfpFJw4qO4ZKFLUYAO3QcqXia DNSBCQzPehqLwptpZZev8mVsHaAq8jQlaNc5AdzuKOAeA9+F4lJyv0cmv+aTFlRZD3/GJ9Kr zPf7jeuNCXvm7CiGgSi05Xht2pJ7p/726AHmynqOc7cAWOsZa5IzQHo3xAbGZMfdRw8tU0Id GIqENVC44MSptBf4pRGeomJQfpJfF2dcxo6cKqbnDiRnpiPfDEE7eDlYDbgtIjcaBiu6t3WS 7j3uNTRPtmDNtPsQpMuq//n1x5dvXz//iSNxp/Ea68sQjiJA500pzVjA20xi9optHmPSIaM7 e8KfvPMYZsPEzFR8IE83mLSGl/lOH5ZUZTK6BWvcOHQFciol6Bdyz3TadeRD6h4V/F6yZZHh iIbC+MYF5cAjyvxrG+gX5398//HT9y+/fn65yMPi4wxUnz//+vlXkx4BMHOqe/brp28/Pv8R Xotf0YUU/Lrf6tXoaK1/5ygnOVPnIKEnqsC1lwBxcJt63iDnAgOIhglYrOcSqIF78uVYdd6+ Vqgt/dvn4CqqbZZ6arUBjUIa8zypC1uKKZG5x02a0G9yXItmtSX9cqFQ+opY1b/x9dYE89lH nV1z9L1eULlNR1tH7H/TeTZO4DY1q5JU3zhk3jUIE5C+GXWXSx2zsPo0vXSTyYAjFc7OYiGk BzKm6KrBr8dPpGtgmOUz72tOO8Z2m/W0HGh0L6RWtp/2bjzoH1FNWqAjTtVuGySb0CCcxR5A fybZiJTqqWjT6FN4gPgzCRa5BXtpjjQoo0Oid9tk5XGVbshK041Hp1WkKzq4a+Dep9oj113U S7NyG5t1PYs+lYvIrFb5ZEx6N1RA/xj3rt2nnx0nXW9et7gbdVZc08y1ItnflhyZWt0KFIKn 2Sb1f/sp5QFKyiSNyF1v+WvlPUNifsdZ+flWsuhSN6dW3kTuPyZR1LNbEVlnluBarTakY+n9 qYyrfYdgUYR7pYW3m83r6u5957Iq8C/IdBJCRnQPYKCeqDOwY+8BtMLgQQY3BFDLHj3E8oYM R5rBgRIFXbFKEmvXvhtGWA++gJGLuYtWQacvdJUMeIU7224yypnEedIpcCtzcEf2yisUmekg 9Qlu2x+zFWXadMhqTbP+6Br5HWRRZJssiTVQHnfZmg4ndetgWnd5xkTRZ+5LFg5qnkpG9wK3 vq+fv39/0aPjKFJXbPOD37YcNUfPwhIUqndT43W1PCHEopmiRrHNbH66gO4DWUYu097Dl7jF 79/++SMayRc8fWIAZoOhOtYgj0cI+sePHVmMNDkbX1HiVYupmerFMGGWbIZfP+mOWNyWv3ts aV35ovVr/h7yN2PgHYoLJew8MqkPvbwZhw9pkq0f09w+7La5397H9ualD0Bo/m659IBWsXNG IZbNyhZ45bdDixI7zxC9IrrNJs/djvBwe3JC3InU64E6qSwEbypN3DBwhNjRiCzdJiRLRdXJ XRpxBFyoyuk5s36bU46jC131qnknGOAdxEKTDEQO9QhvnhnjJVleFWy7TrePqtAk+TrNCb7s XCfrrep8la0efqymMC/ghIVrNuxWG+re8U7iJpS4Q7s+zVKyTtm8y7G79hrwqF7r6O9DG35V rrq3INqON6BMUMx0WoHTeghVX3CReR+vtiqPAq5Q5zy8xKeo9squjDbnOVTmxYOCvHm8U10a es5pFkxxkgPxJrekQ+G9Y7QAXEdm3Eov4oeFVZ2Nqr0UZw0hWFPXap2sqJU6KPsxxEJlHVho H3fZoaC2u/vsUq9mUCNSmt7BZqkqlShoXd2SKIgkpW6vJjR0hxXcbvMOWItHucvX1FLGVLt8 52QGD3D7eP2AjWQrIQiRfo3wvd6cUpxrAOFNApLaTeNKoke12kWZvYCXxFAIWrFwSQ8XrVyl lKwKqFy/CRcJpzR4WUQUTb5K8xhTxS0vVM3SNaXLhYSnNE0i7d2Ukp0f8xISRLt4wnsnqpBi HURyEKQl2yerNd0Q4NxwCIS7NazDl/gu+szqTp5FJJDEpeScvFdHJCdWsYHmw+KCVOSIZIAz S2Q07v5/JHenti3JXKzoY0XJ3ddKEO6mgfrP9XaIfIGohJ6dQ4wDjaYNAIgIG7hdlNzK226b 0sjTpcGvX6N+e1XHLM12z0YH2XExpqURVwa3oleIz4w1bkk8eUVSaoUjTXPyQI7ICrlJsCMD QtcyTal0XYiIV0cmx1p0kRWjD1HZdhWVIbX58fSLtB6zvVSjIrM4IcKGDyLSx/XrLs1ijGjN R297DbVloQEs9TlKbYZkG/0icWqfS2nz716czs8aNP++iug2qSCEeLXaDP9C51yKgxbW0QEP NxhqFpbKuBBEZfFVK8JpdO1e6/2OtHKhLrTGGLp7i3S1y59tb+bfQh90VtF+k+ucdOnGRIWR o5EJpdFZkgxBiqWQ5tkyslSbR81ElJy+HpG3kyvnRMVZGcPJ+BBKlWaryC4nVX2MNgg3xDFU f2QFX8XVKDnkKO8i6oFObjfJLjqrfuZqm5HnM0QVhGyjjmzP9aQWPatInxc2sb3rZ5O2AXE6 KdWCXJ99LdbBBDJAWjM1KE/RsbCaep3doI6Jk257hvgT28Czckqg5dOnadDgMaUMlRa1SkLy FbUIJhTz23NnwgTZzDaZ86c/fjWPG4l/b1/8zEr4o8xP+BNHe1lwx3rvfDXBC9FJ2oppCSpx eEzQM+rtDYubIiB1BQE/Mqu9Vz6nIn0xeg1ifHcgqmvBLZ51sgu6A5YpxYC1rrjwi9efJ1Zz 3JUzZGzkZpMT8GpNAHl9SZNXNKcW3LH2VJfF7koN/BLuTZlLbfqF3z798ekXuHAPEl0q5Trn uHc+rV4ElXmqqZEVm3PgLZQzwR12voawd+WAxwP4dLpWkksjhn0+dsp1zbW5gaJAXZtWUj5k myVeuSpNzrqLaqc4xOn1hT++fPoaOlrYU4HNPFsgz2+LyLNN4k/ACTyWvOu5eUjnwespboF0 u9kkbHxnGoSzqDlER7hJfqVxQY+6SD8hkYPiAxkUhaqWscK10TIoYepSNb0JqZAf1hS214Mk av6IhA+KNyUP5M/CBmv0iLfBW0MEqXW0Gt8jT2q7pOZ5sinbamSQFS8UUDypqZeMHpfyit15 HdShqLN8tWGukxMuSsN7leV5pEyLbi18DCzxFlyFL13si7WYhAvWp71cq+1mt3tKNr97+pRQ ywIIR33SzVUnIwunRvnuHISXzd4bgF22SwMkvPh1j5O2KZb/8ftPUEYzZkSJcWoKM0ra8qw+ 6C2tSlwLT4BylrPfIYGzC0bPqfb9YtYnbqo2Xny+1gh4mxFRQROG6CC4Xd/uE08UPlj/MzbW Kj2ABjqq4hLHPOjhmg2rSNowl2AgiurD96PJrNHLfhKvHnoC7DZE/TPq+UAulIv0Tf2uPY8S ZU1ywfdiGY2PDchZUk93BMh/YSYiE6cDjDYtUED1BPwoQ1gta2rYzSsQT7gy0RogjIJKF0yU v3eVb5Jw1VtwtBQptFv7ildkJYqjeKdmj0VQH+lTVhCg8WBbeyOrL4qGdCdf8OlWyN0w0GO7 oOOY6RweNjzjY5E88+oX9YH3JXs0wlMUScDEHF0S6/XpsPJRsdP/MfYl3XHjyLp/Rbu+95zb tzmTuegFk2Rm0uIkkplJecOjslVdOteWfCS5u+r9+hcBcMAQoLywJcUXGAkEAkAg4qxaxZIc Hw+2KYH8HlXHUB4x7UeTniLTPj6nLWik/7Rt3xF9oBK8vzBC0LX5thJVDh3o2lTdF8TYmZOZ f9ONhr6UGX6lwiXs1j6oMWweqc8GW8qPPxUwgcjkn0GVtG3jaC0E2ipjXUcrFY2fima7vown rw5FNhi6SeH4lX5K8K0mi32cH0GiFqQx8TzxelCoE32+MvLWCounP7ZLmUTMWTQtpe4j+eOP wWIREbXCCEWmEVdesv3ZNNo4+GG59bUgEgP146QglPQhksbm6ubFPoOd7Hju1EMcFR1p2SDz mMpBFYKcwzPAnJfSw35hEQfCEpxO2nSrdUMzMu1xxQTyEOtVSnuZrsajvLpX9eeajBZYnYtC PtY4XZLJZFBrLlpPKVGaBYRVF7LCfqDMHltmAi4mLpqNMdE0kq0Vdyyqf6K8KfPxBD1RiBVm VNyhsFiM0uEqQ5iTfGZjQpkcIAt/IcXN1vEkWslbNBfmBNArtHKucZ+c0pp2Aslrgk6hatJD JcNvk27ci05Mp7070hmDBFYNe+hpQMUMxwQ/GVIMuHKQNxW778V8xabstR6jzPevY4t+LaSx uRBRM8FSy4yyQ1nZ9rHn2nQO+dB45HXRyqJ6qBUSw8akrY4Jhc3SlCiTbSo3i+Sx5Yik2XBf kZ7YVhb8pHRitE/q62qzn8cEZqW4H12RIW9OWSu7mGsadLaj25ZOoWC/mE9G0XqZmfmJhmno sbWMq9GTbAdWqmgz3CWt48nXIA366UTzU/Jw11inOUcYj1LMKvhbPoruE/jXlFTnSGTGl3f6 tR2nU5c/UwrVwGQlj0nr00//ZybQ8jUmgkV5OyRCoPLkVSYfhIh4db7UPTl0kevSo9Pgth7u 9dy73nU/N2JkHBVRLgtVVOkYUGSLe1hZyA+tn8cLN0XT52rPoG5hgAg80ybihePdmG4TLVYR O4TZuUGvSQsu+w6mUNEMPEEqySwYiPxdJn/Gub7gZPVg8W7XykgFxe2e36pApkWRVUdqdk/5 K4EjVyovW8oXgaJPPNeiDORmjiaJd75nU4k5RHklXzjySjaInwH+pFMgptkmf1kMSVOkoqK0 2YVi+lNWYBwMvN2QM+5K6XUz6+viWO/zJRAU5rtcGO1/vgmfaJKBN5AJ0P94eXsX4uPqdyY8 89z2XV8tEYiBq/YvIw/UJTJDyzT0AyUj7sFUzeiUD/4pJZ+DoDiILFvOJu+Sk5pHk+cDdfHK BAa7EHfkTLi/LRh2ZzWrLu98f0ftbyY0EK1YJ9pOdBOItIvsBnUigWCiJ/lfb++P329+g+80 Rxv/r+/wwb79dfP4/bfHr/i+9h8T199fnv+OYcj/W5uF7BSAVtoQZrqQ6XP1O6WXkTJ2RXzJ YL2H0Zmj/7JYGfjxMIhOy5g04pcfauOX19iGCiB+W1dap2G84K6nrqmYEMNH2LpA0WL18vnb 5ccKX2hqS6ICs1YbShTYhKsEU04mB0OMbWOPjnh2dKxebkJWZhdlHHNdTJmx6u5rpo08okVe fcqS3ljwKT+eClihpJ0Jo8tBIdhcLKl30xwB2d1oi1VeN8qrCKR++uyFEa1YIHyblSBaDQUV TeLcqhmatFuG9YFk18JpYeAoM6C8BN6g17UcyLdHKFP4PkbOpZ5fGkiZ1KZIrwy80i+imaBL 4q24B4ylhCnTaBKyIh8iITJosw5Im7OAR4lMtOGwHKQb0rV5royH9tZVOqxzE8ezVRF7moJC qJK37DMlx+n4SaT0aj3ZvuhgWjA4GmqJzlUAW1/namod7CbuzrCFbNWU7ObKkIjfau0bMQQZ 0ucLVpo6HmQ6PpWMe61/rqUiQfjZq0IrWpXQ7NRh3CbMFz8PPvknqLXPD99w6foH1y4eJmcP RFxmNp546FvjqO7juhsz4nlg/f4HV56mcoQVUtZcRPVLIB86OqKgUW2SvifOAGUo8QWRRaKk EIzkieGS9TUBoyoZzPJXBlTu6KSmbYa4RRDSueSFuxRBEnZzZdz10oEZ0rLlbhxvZMqHN/yu a3AX/Xkgi/DHdA85p+lWQrkwQqDdud6g0PpTuFPZSnS85YbSxVuTq5tHTgJt5dzJp50zKz7/ TpW9GwMHHp6Qu0ClD9YBnjSaj3D6pefEECiLnkAeT51y9SXzjHfad9O8CzHiuccjrOJeLWfy rG4oYUJNfUS9lRTgVdeRK5NelWCanCYHBOM02Z33RNz3NkXD55il7H2DfUD21NJQxUOnNYpf 0BgvHCeOqUcM2TLnS7fnqsnUD8Ej+R1AKBMfHR2P4ZXOVuGG56EIgb4FPw9KL0rvH5HwSZ90 RRlaY1E0CrWJIs8e2z6h+sjcekRTXZ4wQxX4LUkMwEEFFF2M0yZdTKoPvuOrDE8OWMc2LE7Q 2VBhBjdajfllOcbNVsurYVXKK+rZKUNhFDqe/nn7nE3XjVSjbVm3WmFGB9SIQn+6pFnsjI3d nTbGQYWjHW0gODufkzujhel5UEhaj92dlVSUWQWQQY0LiA7qEjuCLbRlag8qel1eH7R09OuZ KcnJ3OeLRYVIk1TEmYJ+LxWqchk5kwiRjFFku8RTiNNLAbm6qEaaKitokOLYH3Jl3jCtEV1C oZAiINv2qAQWyKUi7k7asJ1Ro28axlU3SZEfDmhAYGiArrUidZBdejPSrIhKJYDmaSwdDUm7 GH4cmiN9yoFcn6EHt6Yg4mUzHvUvyMPtrIqPcHhHHHuyzyKv+EvS5vXl/eXLy7dJeVJUJfin OI1gfVtkgTPQW2CWyrAbY2vjfRUrL5y7xuD4/kQGSmsaaYcKfxp9olV9M7Hz88Wmu/ny7YnH NVePqjEfGDHo+P6W3ZKtPS5AzLRbLX7CtjYOApu6Yi5V+9fj8+Prw/vLq34w2jdQ8Zcv/0dU G5po+1GEMfHkWHQyMqY9eQUsM80RBPnW6fnht2+PN9zH7A36F6my/lq3zH0ou0lk0W3y6njz /gKZPt7ABgh2V1+f3p9ecMvFqvz2v6bK4tQUOlnG8rSPnMZ1txjkazsFrxNles6XWlpfLgWo x+XoQLPFUO8cGI9tfRZjwgJdcg4p8OMp++EMyeRnCpgT/EYXIQFzmbhZgAHjEUiZ6sR9aUeR pdPTOEL7/HNDpMEX1IF08zojW3bYM0+ZNI7bWZSLy5lFWMG15BjbljZOmBkG27cGvdb46o0g o2cPUMksqiyzefdS09vI8qmkdZIVNWlzMZe7OAru5DPeJYdrQTRCMtRcqCFJVTz2L+OA2w0c ad95Khe9NVS5qCusZYjhFtIeiL5fj9N1QLZ1lADR84sEOBHVXgb50WY7uNtV+j2YzPML+Tik /9ZlUOFFwUh/88l1tyQkZqzqqMZVXaMtEASTo67nRDZkqfusLeSXy+und0PqJlxOOe6Pnhhp bilQPU6eAX5gqxMdn2Z25Cely/TqqBPkGWVqfdftc817yjJ5ShiYtMayCru4Q7vxXFucW1iY 3x7ebn48PX95f/1GHRwuAoR70t6SZ6exEXeWMt0wkADE1cSAYrr5ukWrEYJtFIfhbrc991fG bUkiZLjdoQtjSHvU0jPcGn8rl08IRwG1N9CQEDVrUne7/+xfbEVA3ccSbJvNCLaaIYZU0cGI XCZWfHOar2zxVv28zTLceHsItZ9jyhOGAG8PZe/XmuCRS/kKb68PKx8d8lLn+8V54yW/VvvM 3q5+/IsD0ttvM7afq62vgfl0p9CxjNMD0eDjxjO2j0UBsIVkrB+NyTALEHMJhXnG/NCMRYT2 smDBRge48cfCkFWaMkLRmIy1H/hHmPYypoVJWz6WN3NavXT7SH3txEtO8nhO4FDPzxYID6u6 ZBcFW59UObySyAfP2ZE5c/CDETXdj8pey0xcZCQyiecE0sBYmbKxfcoR0czU52Nep1kR3+tN FQ6jtMyXi9Qi3Z5lCyPopNSFscbXFSmxIorZkCJ0ZRgMTheIqgeUYQzBZ5NiT2BwtmeaWDlp snFTwcevTw/94/8RytyUT5ZX/WRPrCqhBuJ4IcYu0stautoQoSZu846CnNAiln52z+Aa6OT0 KPuIfvkiMjghndQJ7e3vWvZBGGzrk8jygeaHLLutGcOdnFPNjuyAEONID8luiuzIQN+RugZD Pmpg5H7YB5Fvb4se6AN3p7xhn20yTWOV2LzUyamKj6SPhaUktNsldmNJ54UF3Qt92VzCkHyj vCwgd+e8yPdtfhZOzXGfIrkcmAjjIe76BoNdFHmZ9//07eXZb31Qdjdzkry9k69/uPWuZA+8 kMaLrVCnEzaF2mZH6b0rIzKvsNZqVfz4/eX1r5vvDz9+PH69YbtyYufHUoaw+mlRkUUG1eaA E5VoPAJRPUXikGx3wBsC/LA1b+/xanmQjtgYPtsqmiqG+HDsVOd8HOP2jFqe5kt6Dq9v++V0 6TVu6DCdDM5ybhC1wUHHvOPmgj3+sEgv5uJAIKLPc7glelw1I+TE4krZ9zEsr/VPwELJXqhj Rw7zQ1Y9GX/Bbm5xuY+CLqT0Mg5n1Wcu4CVqo7gM5lTtGpuTB2Oty6FT8sCjl+Ubqtigjv3J Rksur02N4xRU2NhPHRA79f6sJeQXp8a0ea02uKvwQobbzStZNeR7P471DQt2p2Z23yXyGxBG NlnSraAdBUpW3AeeQtQvKhn5gmEVKjGsBScPke8rtGuSymZMjMoihI3dXiVr152cXFBv7rlg KtPxIBu689mQ9q7juYNhdTOK18XWnFEf//zx8PxV0tF4qYsnd4I6OdSRkUqV+MfrqBjiCQuB UZIw2NF7aKIbPPXwiYCPPFw96URXkxJM5NHHBB8iP1Q/ct/kiRPZ6piCgTbfJwjWeUp/82Xw kH7wHdr8M7eGlxaPNLR8+QR/ptuRTSmmK0wmg6bb5ZWKHMAXl9kPsJzuU1x9Hvue8mTDcG6u rdS9aNyd52rEKHQ1wanoVMs4mO6gdLLszIvLj8KJEsVoXBEluktzhWHL48Q0DtBhoy5wkOzY 6ixi5J3tqGTVMTqXT7oTUy51mN9Rc6Wv2qG8gu52njhCiZE4vRvKt0fovo/0Ja+AxfqkEKUb 6YkCm3YMoWerPQdIxiHH05reprB4q21fnlVq1V3MMTabAVqmHehlMTdBdCBuQZqpenGZuK50 VcwblXd1py40Q4sexaWTJ6KurA2Xp9f3nw/fVG1ZEhfHI6y7cV/r639ZJ7dn+tqezHjO9yqG crJHvhiz+th//8/TZDW9GrgshQIvNytmgSZqMtTTwpJ2jhdJAkZITipKYlr7Wkp1nABZ51zp 3TEXu5tohti87tvDv8Wnwtf5NVSPAdmk/Dm9k57tLmRsonz/LUPUPajEYbumXAMD4BhSRKLr XSmFKH5kwDYBrrFJrgtaIO2+W+b7qOmSjYIIhJGhvmFkqG+UWZ4JsUNiWEyff9mZo8MD2OF2 Ypx0gcj2dbfSiq2ifNdHgMeszKvVp4J0ZiCyNaYrbIUJf+1jk9GUwIzGfsDZm2xPRV5urMH/ oE4uBFb2FlNsDlV0nzg7WbUQYTzAoU/1BSaQeOdiknkkzHrBVATlh4Bk5DuRX2Tb8owhVU59 zdRm+A6cxV9diVOeMkaXnjihYV9boT8BMQ9j1bpz0xT3am9yqhoIVMJOVymuYoPh0hFfSbBe RjvHX8irRGD6zLiP1VVKxsl0aH2FdLLZ+BJHhycQH78f8cU1bGws8Vp4H+MjivsxTvpo5/nS w7gZS66OZdNnlDMLiiLyckZkEIWYRLepUhlCWU3PDN1e9GExNZATl8zKuIon8mb993c4nKi1 e6kOhg+xyIqyTcNm9hi5IbTIgCoKi0OVwDCHVM7mdsO+DT6saOo4I2wkWgSAexH57H5GjJJ3 zZN160Z9it4NfJvKHP0b2IFDbaZmFu6slgVqHWwv8AMqn3kntJEPa/qObCKHaMOtmYdbBJV7 6s5p5oGB49n+QBXBINIcReRwxJtkEQhFIzgB8M3Fwfbug+L8nTgJRSAYyFyh+a5He8edR+cx Ph8zvsB5lA3AwjcFDaNGeNv7lkutf3M92h6kE9EhuA6IOttMPyedbVkO0dZ0t9uJbuhXCYjy UbKlVMQ8+3O85NJZDydOzx1PuSTSucPdh3fYaFAuu9Ehf4dxqFxb2pAJiGfTl7USC6VWrgwl hrESllgJ8OlyEaLMN2WOnTGxSxuLiDx2SN3ZCRw7R/I7tAB9ONgGwDUBnhkguwaAwDEAoUU3 GyHaSeDEcerJWqDJJEVO5Af6CzDk4yFm3pFht1lQKacLIb2O/dBQE3TG8b1hc+n1LCdgjIu4 LTsdT+C/OG/HhMfJMqCNHHxqhpkTuz4raWesE08nnYStZFt9ODcjbE2Gr0Jvy2a23L9FR9ab PBhEddj6sIfQho3mgaoGQpFzoJ6VrCy+G/pEpx5lZ5WcOIXJwYYRKQrfjlR3wQvkWB1987Xw gAZHXTUIODEn+L1ZXOnIKT8FtkvOlnxfxqT3OIGhyQYyaR9tCY5PiUdUEtTi1nYcsi6wKcxi 0oHTwjHfi+sZ81WPlKIcCo2RvVQ+sztggc9gLSvz0BFFFg7QV8g5g5BDHqpLHA7RvwzwfAMQ EFOXA4R8Y0HOKKmMgHgTKdIDKyAKZ4hNrlIMMtjtizyqUYXO4oJmvtXhnIWeBoAFIMC2UweB a2pCEBjMTyUeUkWWOGQVWa45qVGu4qhxSe2iLIY2O9JyoU+kgFALuekcNyKHRFYdHBu9Xc4K mV7XNgQBRymQ6wKdyI6yp3FYBi5FpVd5oG+VATA1B8qQGLZAjegioq0ex3jEVGYRWXBEFrwz tG1bcJSyabtA9x13W0tlPN62Tsh5tqRPk0ShG5B1R8gj4zfOHFWf8IPsvJMO0BY86UEeEF2L QEh9VgDCyCKEofaMZQG62KXXoDpJxib6cKlgbLux25ucYs+9cYh800uDUnOsoqa+ljhvN/pS NBcyzkjqPlJl2fddrndTB4oy0d9ApiQNkN0/SbJHkxMqE+4Cj9QkywzE99bQykAp8yxi6ADg 2AYgwDM1oiJll3hhSa7PM7Y5TTnT3qVFetf3XehvT8SuLAPy9YkgSW0nSiOblF8svrOzvSUF jpDa2kC3RNQ3zqvYsXY0XY3dsSCus7my9klIbrr7U5lsrph92djUtGd04mMzekTSPYv80Ihs 171sfJuUxpc8DqLA4C1g5ultx94eA5c+ctytGlwjNwzdI1UFhCJ7a94jx85O9S5hgGMCiL5l dHLacgQFGRqYblemCCO/J3ZgHArkOEELFDjh6WBCMhKaQ6gSdJ/QkdFFdzGWtjWKus/ExBaz WPLhP5HGKuuNbi1mHnYNhtHeSb/IE1NWZu0xqzBE3XTLM7KXB2PZ/dNSmen6jbJnk5l6bXMW Sn7s27yh16OZNc24E8djfYFaZ814zTtqt0bxH/DcgcVGoyohcmJERNzqkxapc4KPs/zVSiIf erQaJ7dWZEabdUqaszAGJmKaXQ5tdrc1OLLyXGg3oArP5KFqPeNEB08TSCRDz5daVYAYlSVV k1t3I6/Z7EnPkLmV0Mldk8UtQT5XUU6VPvsRoOqwMiVrnkQlGQwTwyWbl7e317pON9Kn9WxW IVZ5cv9GZMmdK2z1Wn8rpOOWj8/vj9/QmcbrdylgJAPjpMlvQLy4njUQPIttwDbfGqOTKorl s399efj65eU7UchUdXzvH9q23h2TIwAC4LYFZArQsakORKQjv+jSCGNNWTv6xz8f3qChb++v P78z3y/GBvX52NWJXrueHI7oIWtrPiDu6ZkhmeiatI1hHyyVMzXv4wZw87GH728/n/9lbh1/ 6keVYErK8r37+fANOpcaB0tXsOu2Hhc/8gMZs1hzWF5tmfuTPSUkvgMVAmRO0u1h/eu6fC/F nBFNnpGlk11kslRJfqrZrTyRekZVIoZL2Ew1M8h0HgsGM2Vx5+jEMhOJycZkMHFiMS9xRkla 5upC//efz1/Qd88ctFcbQuUhVXxkIkUwQBCpnRvKb/lmqmN4W4YPCJj5Nvn8l6WOeycKLaoO hFNNTkenmujFUIrat0KnIhEP5FegKxUy9Ju/s8TTAUadDZO1lg6NYw2GmOHIoNoOrzQ1/pyA mI6a2ZfBh1wGa48FNzgHXfDoA5w8VFxRRx0EeSK+u8NPzMwxBoLoK4mnmyDF06eAmA5dFhZq LzyDAVGaHDlgotrknhJBfD5xCxt20SSR0bmkZR5FZOQY9xm60FLuiNgHTmx3UEfXRJTd4YqA 5LScAY2jvAhl1AGq0yp3ahLuwJrUxepUOOUB7Gdntyoy4PuDApx6dJ88ffJVBQUqVJM+UMKI 6LlodY0EJWgClsc3VE1JGfQx/K4LHKXzmO1/UtapKBYRWIz+pSKiqCkji76lWXHz9GB4YNGW bXwKD7bnk5fnE6w8G1ip8quBlR7Rj0tXhh3tvGJhiAzeLSaGaGdtVBfN5LTaTmY7GjHSWtAH Lml4NoNaPvNlgphT9pmFTqGuoJlUQkwtueqHzCw52qynPLMiJJhqrcvWRDPeWC8Mqm3WrPrw 5xPEogbjSZMI08sChdh7kWhKw2lol6M2vU383o+omxCG3kaW9p3ayu8Dm75wQ7zLEpO3cAbn XhiosVg5ALMw47NXlWLzEbRCLX3LJkhaEAmG3N5HMN2oE1cGMytUzWFUvB/86VuYG9yXjbG1 3PF+myjKxvJGUKD16MjTdUGM9l2iid7lEZJUNlr+RdQR7ZRhUZ7VJE1clKRLKnzkY1uiIy7+ SMiWhA2nke9MWZnruyKpVE43XHovDI5tEi99vr64ktNxwCcPuoWMtXHM6FFgls/ToyeTSNLf RIlUSmdbsC2tDZhg1SGPbKfnVsTcmZH4nMojH4DA8vQBLKS9FrYTukSmRen6ohkq7+35YZlC 5y/SFOJdOYgvzJCmPEdl5ehGGUxXVN8RCkRdQsyAphkxPVT0oMPaXPr85F/qeqTa5hHKXqDR VgQLbJqKAHqWpVZiOkRWs0GrcfM+YWLQGqqePa80vbeWx3SSGLt6kbaS1KeSP8LUFp4JmV51 kmkMCOyQhvJ8UFvO/VMXDXO3a5KnjIdxdGr1UXary4HsFZQ1fXn7LG/P+sQJ9P2ZxHN7itMY TSVM+sBieDpmSoezExGmT0pyqGWvr5qt6SldHYinNJtb9OV8U39ospDUdxErcMiHDKZqXfTx MaMYMKTnmUdt7s6l/Lxh5cJTb3bovfBRJ7ALOyjMxygY6LzwUCEyuFeRufDoYbOcOPVdWf0U sAp+UMqjwMIPHQzpJzFUpDUlwXVGGLP4EoXq5OXEREP0owcB4w+qjZA4JxVoMPT91mNrhWua 1xo46936GJx3/0S5+nMMkkXcuSuIa0Bsh+xXQBzRsldByDSHuPJd3yc7nGFRZBgrBv1/ZeC7 bToxxy6+S69XEiPszDfLybti58oPPSUwcEJ7e0qBqhC45HAkFncBBJ02NDSQYdsfnz17oUvV VEUZI0+CBBauzhjSAxiE9EZ75cLNvR9RlvcSj+acWkXJwyaJKQo8Q00ZSG6pZZ5ItgeTQXrH r/A45PBnkPxSUgFJGzyFR9z2qxApy+ajkK1u3X1YcCibhKmYE5DYdAynRmmUOUJywy3zRDtT vyWNDaNie2aUje/Zpg5oosinHbHJTMG21Cibu3DnkNIST2tsw7zW38camHxKl1ZYdqbSI2O9 6OHU7PO4oyuMblY8g7NokYuf6mzWuTlEg0XWrDmcP2e2ZRAFzQUWkQ8mMuOhm82gHQ2JfghW MlNX26Y8GcGuTJHBjEuB7hXw3O3HCw8PTLRWNErs63Ny6pI2yypQ0dWoRlRiPLLa7CjchFA1 w0Mzi1zi1eM0EZkO1QgksAOyywFxPMNi2/blxeDPcmXqnLKJLdrsS+bqDMZhApdfRmGwLeHV h3kCUhxhH02PaL5T29e1HKdPZbi02WFP64ycobkadhfThu+jBvJd7XgpS2pDLTDeR7YVxIay 7qPI8bblIeMJK6olfdP5duAaJPp87raZOzI5is20jMKasC195pM7Qw0Vd0AKZrvkYqj7C1Ix z1yedHgmYKpXIWFHqbk+E/akaB5IAaqxnoz4ZEHqeY2ESEcnimgr4n2+F+wJ2kQ5WQOCEgaw yA0uR1qMoJnUKeyiSdMlNBLLk0yMst7iJaT09xSiXKLlPWzJ81aiHfCgQQ5G3JpjEbeT91uR uTpf6t7Efs2rfV2lWrHtID9hwtrJgZnF7ijqukF/C3QZ3N2kWEA7RdBdebpzNeQyJWtzydxt Jo19G1ddmfeSAENYLCLJEk3dKzMM0I6I4cuuDLj5V6JESTwTLpwmiWT4aoVUuxndp+1ljM99 3WVFxiJ0rO6O57Oi979+iF6CpjrFJbMroIuNq7ioj2N/ERiURmFs8B4770K1TWFuY3SY9TFf l7Yf9tTsyNNUd+ZVQ6y26FZX7pM54SVPs3qUXMtOvVSzJ7tFtgQWvjx9fXzxiqfnn3/evPzA Izmha3k+F68QpuFKk49nBTp+xgw+o3jSy+E4vSynd0tXcYif3ZV5xTSp6phRsoNl/6nJjuMp KxpxADGkzEoHPa9ILWcIC8E3FlBCUkjWDBy9VpITGEaMu/tKbR+s+Gh1SVDTkvdufhS/EdW7 woD+sob4Xfte+cAEjzglZKvKKVDwze9P394fXx+/3jy8Qfd9e/zyjr+/3/ztwICb72Liv4km cNOYTPKNcTs32lGWiJVODBlGh49Ti6HHVkTqPz2/Mi6KmvgaPGF3lL7dOqW4RZlaIAiLQ4ax 1BN9GJZlM8kSU8PxhcPEoic3+xSe5mR8ySvo3EuTw5jJu0byok/wJHHTn7VOhlYHnhdAG1Jt Cqal6/smJPDHvBMjjqpF7jOhWkrjWATW8VKfaZE3TXH2+H+DAeYhZLHBcCEjyk6fR4wGtdbK JYnqRQGHWHSmP1UqU4Lgq3ad3m6u0KdJScVx5CxTwCRYGs9qzou5N3SrrYJTSIvJ1Mobc22s rsiIIT1rVfjAVqgB4VkSYxmRMseI0l1OSlOhAJYFqHS9NtTmCjCGrfo1fBLTAzYuPTeE7Uxz yPSKcle9G0OCmbtDK2iLS4EHhrGxodweMu+0ecGBQQmJKScyf3oWcRYrR3wAZkWRbCTuMRp4 oVaIU0fRchPF2rK80VINRGR2bGEyiw40JrFUp7FKwzcTl7QmhBgizUDdJi14xFZhQnzi8gH6 OIPNs3jmujTnjTzK1FyHNQvcaGifVIGnghSWWVnAHURbxIk2aHkM7WMmPgiT5y1OsaOTEp9e YFD7YoO1PFC7/ak2gzNmJQi2tjGXN83mY2fOp4PhtUchrzUKgNNFGygTmUvTgzbsEE6zoicG 0gKN5eZ4mKXnIdUl5Ix9oobKkjAxj5SZ50KI30U2t0et2T0uh4Sw4nQ9WK/CxhaUS1adzZKX 5QQykyhZF1IoExQBBSKBbQ4meSBXRt4liC8hOOnh+cvTt28Pr3+pOmTeMh/anHrz8PP95e+L CvnbXzd/i4HCCXoef1P3DrgtZrsE/ujn59enF9iyfHlBV7v/c/Pj9eXL49sbhgrGuLzfn/6U zPSnhl9m6yCZnMahJx9NLcAu8ujDyIXD3u3CrQWnz+LAs33zJGIM4i3CNEe7xlV8SE8SuHNd 8oB3hn1XPlxd6YXrmJXRvri4jhXniePu1cqcoZ2uR3TRtYxC0lPUCrs7NbdL44Rd2Wj6F4jI +3HfH0aOrS+3fulj88iUabcwqp+/i+OAu8df44WJ7Osu1pgF7DrRQRKxuDOAOn1ccS/SWozk wPLo/ADAA5LNPCPqo0zAZuI9hvPRkwLZp65sFzQI9ES3nWU7tFnYNJaLKID2kKfsy7cJbVub BJw8EFMTr6dNgQjn2d74NnliLeA+8S0BCC3yenHCr05EfbP+utuRblsEONCED1BtohKXZnAd 8tnP1KXxsHPYabUwbHE2PEiTRdyQC126KbGSwfE1sSceQ5BT5vHZOOtCJayWABge1wiTigzv IOI+NalcT9vIMfKOJPvyVa0EqLNI49q50Y72ujZx3EYR6e50GgCnLnLkwBNKhwqd/PQdZN+/ H/HR482XP55+EN/33KSBZ7mkuYrIEbl6kXr262L7D87y5QV4QPiixd1cA03Khr5z6jQJbsyB v9ZM25v3n8+gKKwNm19jKhDXPZ7evjyCyvD8+PLz7eaPx28/hKRqD4eupX340nfCnSZxFKPl Wftku9/UcmjNyFwV/n0evj++PkCaZ1izpnNWfWlp+rzCM1xtD5ck3URWqnXKfZ+2wll2V45F P1NYGQxOOQUGKgbkCvuR1oVADT2KuiMEHdDd7SJcl8rM9bWJX18sJ9YXkfriBB5J9TXVBKkR yRsRxTkhla9PlgZUQitjdPOyWF+CwCczC2kqUUk/2BHU0PEJmQf00DHLKoDJtoVBSHxZzGxT e64vUbQ5gOvLLiAdTa8w1Tu7UB8x9cV2I32sXrogcDTmst+VlqXt8RjZ1W4wkGxTKwgADf2O YcF7upjetgm9DoCLZW/md6HrdyHr17WWazWJa+7hqq4ry2Y8RHX8si7Me1KmoYT2yMMeqtvt NE7KDfWG4/ou+5PvVfrRp38bxPphA1JdotX+rZclR/MoBwZ/H2sn2yCGtRPLPsputTHV+Uno ltLySq8AbHEogKa/K5+VCz9yqN3Gbehu7LrS6y60tUGN1CDSMwN6ZIXjJSnJxU2qH6vx4dvD 2x/GZSxF4zyi2/EtDWnAtcCBF4h9JhezBATaWumPnR0EjpiJlkI4t0As/vrw411xFEKgczHT Peq5Wq89k59v7y/fn/7f401/4VqKdqPM+KfXfWLHiCieJEQO/bBaZoscUWvRQNG6RS9AdFWm oLtI9LAogVnsh4EpJQMNKcsulwSchPWOJdvbqyj9FlZlco3ZO0FgxGzXUK273rZsQwcPiWNJ L3okzJfswGTMM2LlUEBC0Wmyjob6VT5HE8/rIsvUAzEob6IvWX042IbGHBL4bIYOYpizgbnb Y9wmH6AKbJm5sw4J6JuWccxEUdsFkNhsIjFV5BzvLNlfnTxTHSVuOcmW9ztbDeVIsLUgwrcs O5YP7Vp2S4WekUZnaac2dLJn+AAM30MXSHHiKBnFXQG9vHx7u3nHHf2/H7+9/Lh5fvzPze+v L8/vkJIQivpRL+M5vj78+OPpy9vN288fP15e3wW5fIzHuBXPEzkBB+d4bM7dP+1g7RC8Lsqb 88U1PQdLxeBd8Ae/lEz3OUXtFGrajPF5YMETJLMOhrGYB6WS+23ZreYhSy0ROTC7lC3/Y8hV 1HE6wtdJx0PeltdYtpGa6kSf0iHY90p9Lm1cavYqEydJP2bliF5vKAwbZ8IwXXfCOy0K7ZIT c8q/RCWdjipuQLehl2dMBYzQ96ElnoHN9C4veCA/hV4NDVuadtGg9pwEq8bpQgRPU934yUZb 6ooM5n5KiySV68NI0Cv1dTxXada250oZdXGRUyYPrLNrmKUxWUmxDmJ2bQwqjVIEp7FnhU2v fJW4TI/yzdZKHcmLYwFP8ltDyqksMfnsdu3mv/jJfPLSzCfy/w1/PP/+9K+frw9oYSQeT015 jrF8wyb6Z/uFDLlx0tPbj28Pf91kz/96en7UilQKFM1XVhp8z6QhgU6KNLhZlpi6qs+XLBYu hyfCWGTHOLkfk37QDfNmHm5f4pPk2bfjP921M2WGsqTsXGQekLUn9RPPHGhQWuTHE7VuclGx 102MmEA6ZqWa6QUEiyEffqW8aM5tn7ypI4Sz+BiHEC1/6dBtKyOI+oF8VCuwwN4gn8vMpkNV dlS+f336+q/H5bqy+/nb37WNmJDP0VEkwkTPm0btA8ESZrtubd2j5bQhfZfExUetk9wmsVHc 9Wp25TE+OmT4ZiZU0NwlvcKEKHM1JcOKS2r6ondDIZe+r5NTpwySvO0xtLRoOIH0Jq6yxcXj PM2ah+fHb0r/M8Yx3vfjveXCnsEKwlit6MSDxWVtB4tyQbsrEXi7czd+BmVx7Eu/8ceqd31/ R11+rWn2dTaecnx554S7lGgO4+gvsIW4nmF+FQHFA5rJmGjzhmNqXxMsWZGn8Xibun5vu/QN 2Mp8yPIhr8ZbqBGoV84+Ji+2JP579OV6uLdCy/HS3Ali1yKbmqON1y382LliHA2CIYe9pZ2Q LFVVF6CUNVa4+5zEFMunNB+LHmpTZpa8xVp5Jr8EfWfJF3oCR14dJxEGXWftwtTyNjuiyOIU a1/0t5DpybW94EoVLfBB7U4p7HB2dBVmw5oi3VmGc1EhW+DbW65/98H3Qr6j54cuVbcqAx2p iCwvOhXidk7gqC/MuIkNfpvsW4ElCEKH/EYCz86yyUFfxlWfD2NZxAfLD6+ZT9anLvIyG0bU tODX6gxjtyb52rzDwHqnse7Rp8TOIBDqLsV/MPp72DmGo+/2JlHGE8D/cVdXeTJeLoNtHSzX qyzDmDI809vMv43v0xxEQ1sGob2zTRkvTJFZbk+8dbWvx3YPEyR1yQ+4WIUFqR2kH7Bk7ikm J7PAErifrMFyt0c54yu36y7wRlFsgQLWeb6THSxybIjccbzdjvoAudAsWX5bj557vRzso6EJ sENsxuIORk1rd4NFnbhr3J3lhpcwvRrqPjN5bm8XmWX48F3ew/eEadL1YfhRuRIvOf8llmh3 IXnQ6CZOBs/x4ttmi8MP/Pi2pDj6FM2HYAReuxM9BvsGjaUsJ+ph0pI9NHF4btlnsZmjOdq0 mOrbc3E/LeLheL0bjgaRcMk72LHXA86unbOj34Gv7CCBmgyG1NA0lu8nTkjfASv6i6QStXkq OpERlIUZkVQgdEH9+vvDl0dBQRWSJmnVTYcbUnXR+rCusjFPqsAUE4HzwZhAjzq4GSefazOu FnRLWD7iagiDKJJrPy+kQKpYcFO1LgW+vwABVvTRznZo6wiZbxeQF1s603lQFAl8ypf3QSB5 NGHpQJUaZ5teWR/GHRl0FwYRSZsB/RUcs3Ef+dbFHQ9XY3Wra7GcLRkqi0cSTV+5XqCNUty8 j00XBbq2tECekqrLcRbnkeQFkwP5zhJdf8xEx/VUIvMqSI3C/pRX6Lw9CVzoLNtylKR93Z3y fTxZWwWO2o8KblKoFLZws5BoCxXvtxkKC++h8VSJgGavVeDDV4pcIxJorYHMmtR2OosMHMf2 Vuz1HwhUmBaB6ym1EdFQchcmoal67CAmCxwlUzznWm2UaGBU7FpVOMmUOcNkSHlKm8j3gg1o /BQ6tjJo1p2iThzj056qzAznTqd76BMZNGMrRbzqslHaabrKRuWSeGpJQCKLEnfWfRVfcmW1 nIhkSAMUKUN3oGIrsw/cJs1RO5lL8raFHehdRh7erDM3Fc+80f8DQqchcv0w1QHcbDlyKFwR cg2Ry0Qez+BDd+Ypc1jH3TvqsGhmabMmVk7NZwhUEf+DAlBbcX06MjyTl7CZMS4WeansUPgz svF4GFRRkHbKSQU/qdPkQnqgb3lYS22HtrBiPXWkrPDYKMw17aSLL3ToTmnXk1U9u3EY7855 e7ucpR1eH74/3vz28/ffH19vUvVE+7AfkzLF4KBre4FW1X1+uBdJwu/ThQW7vpBSpeJ5Kvy9 r+t+vGQd8WQay4V/h7woWv4GWwaSurmHMmINgI94zPZFridps8vY5ENWYEihcX/fy03q7ju6 OATI4hAQi1u+CVa8brP8WI1ZleZkFLm5ROkpKvZRdoB9IYw6URAi8+UYc3uYlVbG6JE7kzNY TmRlVuCbbmRkdjzuwvrDDDqSQ+KPh9ev/3l4JSIYYL8ySSRl2JSO+jf066FG1W/S+pS+Soqm Q1ttupfyclD572HrDJtbaocIMMhM+dvXSoho5AHtCL6L3Ed52fVq3c44PMlZCuDREIEQW31p 6XeCgNWwK8BbSvq0Dr+1nTJXWIb24WtAeTbiOXVMkOTX8StZe/6+QuSBvsjX5hdKNGH/STaN bHxCxw8ECRaCosgqUM1J8L7r87tzplRwQqkXXCuqNni5CpOawO/CTO5KV46PO4Pzae+wxK91 bzuRUgFO3Lw84VzyoO3xKkgjHbMqa/Nk5NeOSjHjkV6AJvTDBnb0KTEipkUHsVyWCfD36FqW ThN9bQJNWds4BQQHyuSxaevkQB3BTWzoOa5sYInb4+nxvTq8sxpEdU4pboDe3reyuHXTw6AR xjhJlKnHyOqgu9R1Wte2TOthJ+ZKpB72VVmlSpy4pTy0MEEqJ0/itlTX5YkGC38MeudFVjYl MDl3fU1HQod8riXsaOkHFliTIbYNUaMxrW2SzN0J1iH4Otk4BYoRk/Ul6dGTjUGVFyjT3WSb HTGInlEOM5/2BnG1L2F29J6vDMxjXaSHvDtJxDSWdmVsyDE3vqqQyvDcrC4NE6PcwyhQMppo zN/FUeuWGd0QVv+fsWtpbhxH0n/Fp42ew27wLWoi+gCRlMQSX0WAklwXRk2Nu9rR7vKEyxPT 8+8XCZAUHgnKF4eVXxJvJBIJIHPXtySnx6JwyBFK+XLibfTZV298fZ0WjhWMzKWzBdnSblcc C2MzwPUW+mtoIVxf5kqXoZQtEE41PSfY2N71ZQbuZbjIKPvPIsSjMwfVO4yGnIvG7AkZgwxA 2AQ6F3cRkuwjXDIjmn+ACTcaaSx8Zo/77DR2IrDV6RaYUs+tKopuJHvGuaCKfP7QYvFwBHx8 KyoMkeKYezrznl26aKqfTBQ0mZwn1nYkTJABtTAsxha7hgvLigllYc5mw+GYn7HOu+G6qQFh WBwyoaWS+6a8W235+SStO/I1p6PLwduvyjWQu62qXOurO2EhRQ0Z6EZNhhf8+u2Pl+fvv78/ /M8Dl6yzPybrSh2cjQnXQ5PzM7XegFXR3vOCKGAevuoLnpryLfxh72G9JBjYOYy9z2czcWle wHTaGQ1VSyUQWd4GUa3TzodDEIUBiXTy7G1Hp5Kahsl2f1Avjk2V4MvCaa+efQBd2kZ0WguO VwI1ItuiNJmNaeHScYe52N3wE8uDGLOj31jMQBI3RLofRVKVbsFXU11ChCGfT06J0RFw4xKu BS6Vw8vOjU/6/7zDJL0MrpaY5OBV10NbGaANCilBhuzPFl/0WKMnoYd2uYC2KNKlsRoARikF afK2R5Mz/dTfECMC4S2bcxx4m6rDsF2e+OpCr+TTZ9esadAEi1wVV3eEyfz9+UBgZTXdleB2 hkkUyxtbrz9+vr48PfxzsstOPh4sYZUPdS3OiWirBkzRyLDQD3VDf009HO/bC/01WC7H7bnm yxWH/Z6vNlbKCMinNpNbj7Imvb6lQLjFlazScfMMT34y9jByKtpz0aOC/06LKWK2PbRoCtYt 67nOtB0aNdA4/BxboUHpN451hDdIwWVfWSNTlmoJNrkMOKKTOjWk00QYiyq3iWWRbdW3d0DP a1I0B9jJWOkcL3nR6SRafLYkNNB7cqnl9T6FCDtIrhLRsd3v4Qq2jn7ic8amcMW2G5ju74/K xoJb3lorNrm8dgggOkrmehu4gSJNmj82BII/CueFVMfgxjzf/OVcMw/0rGZXmHzLA64SXVny nfe4p2ZN+HjdtbRANuYOtrJh2N5WFN+0SC3E+Xtn+hmrRr7TLXPXfXqloz7x2VzOBhu9kc41 0b0tz2lL+aiPqAEc7PXIQAPp4+CGPrW/gDHId+qFaotUMdcXcmSpndwNkeePgxa2VYzDrgpH zXSsUiFJoyGuNjfJthv7QFz0ke33RxusRgVI7qd6cAhBZWV57Zw9LGFhw3ZInJEMaaqe5c60 AKGFJu0S6IQdS9W3cAtpBBGdVW12MiuQEc/38KMpAdclbwlH0dvr46FozMeuN8TxWUajIPWN 4Uqj5HrFaGNTXPgOsDOxOA5j49RVjvvr3ui5nPQVMZuTS2GiPzMFakUegdU11UVCEZJQhCeE XQ4QI15GODOkK2acBqTIjm1oiZiyyUtz0bRg1DB1g/NPel3mj654ZvknTNMVRWyoH26s5pRk XIcGfF+nDo/2YknMKeaXbIaMBZQvk/7G7BwRRiu9ejjVSOHU9gc/0B+hi75sK1fX8CXRklpN HcSJmUaXXY/YpXaxnpcdK3Nzka+L0CoJJ6KXtRcsNuQBLRJjUp1LkgbmTJuIUk5ZiyWYC1vq GknnaxAYuT7Weyk+hdp8zP9XvHC5KciyB4n+ESfcDgSKnNqo6DabjGhOQO4LSTCrI1MCvWdX FG7JDWwdxJQXD9rQBwkzm/SR2Bekkq7UUViabLDCSJyWh5pvSqrVAk3eGJ2S4sZjvmvQUXn4 eTcRTiyuxFzfFZyvHebSpaNhsI7agl3hEG8811os9GKXhFVGk2MgyQsxtKy4AjNSxruvVjeT y6i1C9cXdpK8HtNAwapTwyVFrB2LK3Mk2MF44gs2L+GX4tcksuSXyHIZ4qqouRKYy5YmpIWO FNK37ItLaWY+U+0Ecmsn0l73F2upoM5TuSV5iH3u6LhdsWstdWIpE7iZ9zzXKrSwMUIzYgmy Ba5bNLbzzLMnuoFx2rtkzmlHW2OQcYJUPHeDqThzZJZyK7tBYJt3dEjSlnItiSO5iutmbpB2 ebk36yYY7EeKmhpbizvRRjUXsjQn5i60y434yjrMS+xuWL7EnvpWbNWYoerV2bGbE+A/rBwW XNSauUaNztab6nNWB2kYz/kg3fR4aAZrh8k/S0Jx+EXHy7GkrDJNJKqa1G2Bl6fm3GPySdWI q0lWGRRMDiP5ru81m1xI/vb69rB/e3r6+e3ry9ND1g3L27/s9c8/X38orJOHfOSTv6tPFuea 7yk8KOtdhZ5ZKLFWohmqP6/1vEh/4GPnare6SJgi00AA0yhHoGKtNGW2L6s7BbpmZ3P3fCtq cGSOsvZdTQ82JHxFZ/WoubFVQbHDuff1CgztNxhlArqcy8ZQmWxsRv8//199ffjH69e3f+LD AJIraBoGmH9WlYkeWKU/ZtNQd6cRMc9Ib1ozlDpiYwQw/ShNRVYabcrq5lBnbTJpLctn+7FM At+z5+mnL9Em8nA5cir706Vt55VEa2IVg7eeJCd8pzXm+AODWzVw78oLLlQIStnI2q4qziuK 5439VBT1jjyuCWt2GncsO9PFVQKBxlMHFvnz5fX787eHf718fee///yp7wuk03BSDoasl+Tr QdzIsyT9De3z3KWr37hYy7lcGbC8hkuQXBu3jGo6k3B8viemUqQxlc0K2A7MhUqr9TIQcR6Y MUY4CTejuyR8ecYgyHwcWFmZNlmJCh38UA1o7Q/XuzXgW23CO4KIhFarMHHCVMbEq2RiW8+P 1Un7gYGnZXWl2OwTGQA0yS6XtVDq3KgiCOeNNrXq4AA26wYXhEsuidlnxjpOM9Nj84xTxj9b neqk+5x6fjLS3drCLgN+zBE1rEQ+882J26goGpVCRDWXMUMUda6EQZ+9zrsRXFFbUGu8a6hj HVpwcPGnx9W0WHo2Ob40GU58kUynRyOzPcDmCbfb8dAP1hHX3C7yvacBTI9A7Z3E/DoUqdYE ydayh8r8ZZ2fxLW61DX6MW4tWt7CVJOefXZWSX7s6AAl4amWdom74pGWOXaDbWZh7a7o61Y/ EV0mT3upSJOvfA7XzasC7gAjBWzai01t874tLREo1/ImJ9VaYedmqUt46H+p/VQcuK9obf3T j6efX38CaqyrIr1jxPUpVP8FnxcrJem/4PqQM2+kc9o9qmtYfWgvGDOdb9Vyt2VBijftrEK2 FKufv729ipgLb68/4DBZhCR6gP3WV7UaSIuJ2EVyz4BCqKSZvlq2k7eG+3hRpPL08vKf5x/g BNpqcksTl3F0VhZTzpGW+FGYAk2Cyd3KQxN7H+eNSnN7j3CIlkKP/9cawJraxaFHdlGCHHjC HuNGc4L04wyinTyDTpOKYAh5xsdhXVefGdftIDI/X6bnKg6HJ1uLC3bXxU8TsCmeVj4mfJ+K yWbBMO1V+X/d0bFbk3w1vEMWt7nPLhaxgqIKjMQhxgZ6/cxi26o35Ux0q10l1lHWlzWtLJOn Ut0qixPTwK3WctETHJWASm4wP9g6m7JtVsLAqJKXPf3F5W754+f727/Bj71L/rNyLCDIGGpu hFfCa+BwA6UbRSvTnJRqsf5uF2AOlEdMq78K1tkqfM6wEQhXVR1DX0B1tqMd1hUTynVCa+Gw G1paQR7+8/z++4cbXcbSs6Iba/njur54hzwWZ+1c4sO9b6ZmB1E2Eb7rtnbWGl7l6BNUi6+7 UmRaLDDXAMhoxB2bmWQsO1xKTZgUM44dusLn0COvbN8dCJ6DeD8O/3e3S39iRbVeEC5KXFXJ qqAqdJp2dZo4zyukFlh+kbcBDOBSj1zQI4XkAMnxwUzAnYO3rgW0mX4nxsRyPw0TlL4Nkd23 pNuHSwqmPTJSMWx3R/JNGPo+BpABM0fMmB9ukEE3I65CTKij+AIN0ZYGDPdWo7NcHVXxpXNp R8KJbz6bcbG5S74x79ioyEp7AOpOdbtBtKgZWf/OnSeEHnI1xsb3+ZYZ909i8d1ttHPqoYMY ALy5zimmQfAZ6PvmVSsBnCLfQ7a+QPdTlB6Z10QnehzGaKNwxHnuPTEkPlZmTo+wSgIdmzuc vsEH6SkO0zXbDWeI4xT9FLSmYE11c+pVuzzQXyIuABtp1tr0rMsIoklknz1vG55RW9/sAuie CM1oGFdYISWAFFICyMiQAGIukgAii+ECXRWhM0ZA8T3pIblWEljrW8GxQWsYBXgFoyBB6xcF G2QJEHRknEq6Ga3IQGmHv0pT2a7Xe5KCc4U+pq4BgM0hQd+i9E3l45XfVOZ1tQXAhwMHUheA GSQlgA5SiIuIfXENvAiTBQBsAkTeTcdauFlhwoN4d3dCAV/iubQSQDdOtEIGY0649ozUUNBd /IgcFnSkYzk9xNpDvE9COgnfm0inPHitCrrxsenE6UGEimU4hfXXpq48psWSBDq+Pk+YXNmt LA+sTla1oGNOMsf+ZoKwk28xnez7jwJrmhas5F64VtOSkl1RVcjmvaqjbRQjI6Bqs2NDDqTX wsfOaA13u6zbaBKBjX66dvrtPjOYEGTACCSMN0jzSAgTkQKJMf1DIAmiuwlgG7hKsA2QBWhC XKmF2OowIy75veA0v9xrytDZlDFqb5GVx93PLjxwIOUn4wVeX1p2zRVmuJPGiPVaBti6rPaT dG16AMcmReTLBOBzUoBbRPpMwOpXuJIOYGpeFlYAd5IAupIMPQ8RNwJIkC6cAGdeAnTmxZsa mSwz4hp3C06dr4gmttj3AjyD2A/+cqQN0B1lY+ZCKwbngQGqSfen1F+zHvYVV5YRGcHpYYSJ lZ5pIQwVcorIAE7eIn3bQyghLFegY2eigo4d5gKATAxODz08odDDG0ogplxB2eDce1X89CyO fbSRgO7oQhYnvvUiYEbQWHkqQ4QdNbtOmDk9Rls/1gI/qnRsIgo6IsQF3ZFvgo4GPWqjRkeW D0l3N2OKqKaS7preE3q/8zee9xEu3/8wV0Y+xBp/mOsDCXJ8rNvsNLiu8gom50U8WnItHFkE xOsE666+ioA/mxrbbU+uWAn/W+5L3T+iwVMPa5ZS170AWgeoQAAgxlR6ABLc4DRBd9aCmcsx 5DgcxWjc74WDEXTzAPQY6xZG4gCZvpyebTcJIp0pHOcQ1CjNCA3iGPOwr3Ek2MkWBzYJIv4E gE10DsReigo/gDao7wSNw3y4NwFJhG2eGd+WRdiqwfZkm25cAKZKseocBh4pM8zipIC4sqIy oNLsxoD03gKGvvlUS4eDK9YIKnyneILFsbe7MbmdOGG865NHcvKtX4ga1qeE8uzqo1FwFz4a kiDYYKezVNp40NQBWzWe3g7q7I8vVeIKYjHzDDnxw3AtA8ERIb0qAOxIhG8ytiFuCxZQhDvK 03jStXl2qfwA27JdICAwVqDaD2JvLM6IpnGpA3Rl4fQAp3O12kVHZTQg/trQAJ8smBTl9MhD exZut91LMg7Q8SoQPJy4yrJ6dw5uM2A6M9DFJhtLcrN63x4YQtRIJJC1xQkYMBOnuHOBN+sm drUNXxTuZLVB5B/QMVWP01PMuCHprvV4QtfFkrgqgtcOvUIi6HhRtpjGDvQYn8McQaO+agx4 h2yxVRromHFI0B1F3iB6EtBTR9UxO7SgO9LBDDaC7ijn1pEvdqtU0B3l2aKqh0DwYKcay/oM 23rYCSvQ8dpuN5ia6rqFJOj4tKIkTVcVpy8VX0iwfV1VR2mMShQwkW3i7UqiggPb5AnrGrab qzM/3GAjqK6CxLedJgiIJWHs9gmwsKyaW4EB0fUkHXyh5gVzZJ7cMRM2ZEhDH/cxpvLEq9pL s3j9QD9OA9wFs86zpmVIDmS4sY4kfugRZMTJtwN8dMENvR69CiRZzhPHahkla3+1WVFGdlVy nd1HaXdvtO/khtH1REWBdQC5omj5OkB9ZiiveaVTgzK3bw0fVa/x/Me4EzeUHsXz8ubAtFiU HO8JZmoajvp9cUhoejJs323+19O3568vojjWHSX4kEQQMMxMjjc0utUWWGdEbBfEAZ6jo/0t 6llUpxJ3HgZwdoSAYStwyX9hz8oE2g4H0uvtykcKqapHndj1bV6eikdqFl46EnAl/zg/sta+ 4X1zaBsIuOb4rqjpuN/rJSiqQnvrI2hfeJHs7qx3ZY89NBDovjcSOVRtX7bqW3KgnsszqdSn 4EDkuYmwbAb1sdAJF1KxtjPTKy4iDJyR+WMv/FPp1DIjuZFmyaxx84nsetwJPaDsUjZHNMaA rElDSz5rzJyrrGsvhTEiNFdXktC059YsD8ScgQnhyFL42a55Q1sVqXl79Q7/eBJ/3FeEuhLu CzmgrGRLuHDS7rE3fAJv4Y1hYYz0eqhYOfeyll7D8NsPgLU9K05OtCMNRHnhAw33iyl4Ckaq x8YlOTo+jbUI0gpRi7Oh0pGgDyrsTE93EaMiWdmbzdJVpBFR4TL8KcLE80htL4iagIEoqHqm lJSa0xdJMx5oCWJRT5xariJOS1U2mHc5gbNCd2QxEYuK8gWhwB4MCI6h6arBkmq9w6+zmOYQ xpHQ0j1dxeutT+0jpOye0+UZ1wsE2Ha0KFxyDyJzHQzJN8AiOXY0NMRXWdYtM+TPtWxqa8Z/ Kfp2tcBfHnPQO1ydTrkUApfMw87sT0GXzuinXzoHqTqqajPYWr1Ek0f1CbiOLGauss7caOOh 5Que9r7ITMn8aHI1I3P98f708lBykaXnfUsMZZA34+v8ge4lQM1SgysRDo6zGjNfXMe+Wbzt IIUe6G5sj1k5PbqbAtKo/QsciHP3Ba/RSNQ1X7pZqfrDnCmLc0VRyfrpz9e3/9L3529/2LrV 8snQULIvwBv5UGurRk25QjLuwOceXjhqg1a+x9ef7+BF9f3t9eUFc2e+lIOV+5qnqZVgxj6J ZaYZcSvgwtbH6l0xcLunC1n4JT29YLRRrH9q/gomViwunlvcCYrg3PWwDDTgw/R44UohaQ66 qBCtA36bb72hp0AI84Mtvn+TDE3oBfEW0wUlzkVqZVWB0DCJYvdHl8DTN+qyOuABBrXR3WD1 4q9sLf3GqqT1nudHvnrqLOhF5ceBF2rWVgEIx9soMcCIoU3UrgMvxK16ZLVQPd+kwjY7MFOl YRZEV5M1a3dcsRo/D7vCHjkS68lnd4fy5tryarkZwBe1G626cBvhxtsFR0/KJjT29GOGmRxf r9PjePe3uk/wW21is40mquFWe4GS0C6C9EouAkg4Vr6FLcbMFAKVztiNHBf36zox84OIemls laS74N4GBNgXh6EirMVeHstJkgepfgggG4+F8Ra7Qi6Hn2l1EtSGmqVuCnbdqc7TpsleZvZk ZhlJYg+3GEqGKou3Phr4ShaKXDebJDZ7XHisV9+lLtMy/ssqRMvwuNgypaLZB/6uzoy0wFF/ sjXrXtLQ31ehv7XHzgQF7rrQLNjwAb6r2OJD6CaV5Tu5l+cff/zi/+2Br9AP/WH3MHnb//cP iB6BKEIPv9wUwL9Zcn0HCjLmP1cW5xGis9kjr069GA/1IxusuvLx50qUbwF7U4J15Rx7z+h7 rqLUw50Jzzqa+J41uctOP2uUOR3qED/9lEMUXDKT2LM/rA72K8b9y9efv4voHez17dvvqwto DzGF0PAYEk1jcYVr6XL29vz9u6aPyLrylfygudFXyaYPcA1r+fp/bJndxhOelxTbKmk8Ncsd qR8LvoPZFYQ5cHUziuefdcOKEJiYSMZ3QSXDLFoa3yTRHTUt9oRrTaM+pETTP//r/es/Xp5+ PrzL9r9Nrebp/bfnl3f+37fXH789f3/4Bbrp/evb96d3e14tHdKThkKUzftVywjvO6cqNHN1 pNEd/mkoF7x5cb6fBthOG0dPWQF19Qox3NoIUdAoncKsIQXoWaa7vQTCrPEuqQDxmLGWCx40 F8A5xvjmxZGH5TMeiM25Luzpy5GH5zkAsDZj4ZuyYXvIC40utzCAm3u9ToIs/f7b6XH6OJSF 8NTuqkB/HllBl/hLsPGEkiKCZWYnu138pXBE5bsxFe0X7BDqxnDVXvDN9F2f8V3MzqwPQDmF GGIraQKDei6q0BP1TelMPz7WaazejpwBvpon2iGyAqRbNbyJBuiRizUIPYHUOfBUubKhXtqd kf6UqheyFzKNsxCrakkrP8C+kEDg/CRAMr/+f2XPshy5rev+fIUrq3OrkpN+uR+LLCiJ3a2x KMmSut32RuV4OjOuzNhTtuee5H79BUhK4gOUJ4t40gBEgi8QBEEA4Jc+uIy32rmCQkyojpaY eRCznFMdKlFrSm3s+20xbeywWTamvUkoQ20/B5MV6MZr6vvoej6j9q1+LbnhATpEDQe0zYRR ZW4FPlEbXU4VLBbSr8UguDQvsc0PZ8RYcQEHaGLGVUeAUxML4HNiklTHtXpW67FcX1KKXo9N YCmvO6mDHh221CGGbUNWIzHUBaolNWZBeUJfAJski3FJJ0nek0obejKimCHfefXdu1lNyFFd 0KONy39BTlwl0ugDtrGwZlPySW9fSlyuNs50ImIt4HiiourvJl7fzGfUtFLwdn8jzEsjm8/Q 7N3E5GgrnCpydCEtVSh02ZBShxh8rxXTme0aa2AuyVAbJsElIf5wy1pftlsm0uw2UDIQvDcz l+vNeySr2fvFrBZr6jBhUqzX5OYnP6YMLwPBbDGh9mwvPZyJWY6vybq5mq4aNrrnLtYNPWaI mY81FwlMr5QeXovlbEHM5uh6oawf7lwrL+PJlOIB5+qYuFd2Ib9E12Oy7xB50ifFdMnJgHHG WnPS13WYu9v8WpTdSnl++gWPVKPrhNViM1sS7OmQQAQi3Slrs4/CeMLbRrQsY+Ytez8YGEyU HF4ZZfQo1fFgqwv1AsLvrfnYVyr8t8/LsVpMKThrNtMKuoTSNBFXM7GhuCCcSNwam/UlVWp9 yJcp2bBDfqK8Kvte804YkkkVxZi8jeho0L0gt+Pw90PYwP+N6zV1I0picGOZnJ4qUz1jH5UO WSkt2CO1AsV8Ro1YKdYnCt6FrPNn22lsmADbHgnBUOdH76Aq6QvMUjNWYDNbTUmpibb8zZia IprVkjoGnHC2EbJrNac0ExkF0Qc71yF9IU0ynW6olSGv038zfLTq89MrxqYcky9G2uy+/Qm+ 98bUe9bBWhYLqOiw7YLlGyGhbvO43aa281R9I+GUm5cqZ2iE+g2DdeRtXjTp9tZhCLHSckCU ptE1z7Z4Lq+JT/eclY7BQt++Oi0y7CWHEyb1zRhtTikxhzDVNNs0Az/b2A3waOBKLZzS6pou DFrAhaZwC2acfpiCuJpXcVFTiqmsFrOW9ylirA/xaiD0VXWwrUEIFNtl4A3AcUu6E6KfYasT 0A0zQHkfur8lo5ZVSsMFzw8UscmdWQTfsZiyemmaCPPNmHqzhstkSX7lguAUgW0s0KGF69SV XvNwOrb1nmHyUJVU1OI3KWkHlOO+qBvZZP/CHGOqvj7/8Xax//vb+eWX48Wn7+fXN8qn4T3S ob5dxW8jMkdSXKA/ocm0ggTXZo9WBl25TtM73l5Fv80mi/UIGZy+TMqJV6VI67glEhm6dGnN KDKbCCfJMCfdItazy8uWzgWoKVgCf24wZ1ZiZ7oy8QxrmU7mlHLv01naCIGeLkfRy8U4G0ty O/foZpYNw0fPRrmcT2ej6EtzQ/TRjsLSE2Q4GMvZhDqt2ESrk3mNa+PWU/M5p43bTKcUZx1u TeBQ8U+nqynVYI0jO6PDzcmmdlhaxLpk5Fsam6i10kZ2OFFmMWJgOO30nxYBaIHzpStmXYrl /J2lognT2Yzo/h459/sKfjU8NhrhSSFWT9Zu7R5RM6eTGXT425zJ3pyc/KmzA5mzL0kRCBvh ibKqdWIoLpUrEMn3dVSwKpmNMvahmgf6/gpzah/QXTb8dRzhxwm+HvY7tsMRZWtcQl18WSRi 7HvhFOB1Hl+Mtl1w7CSP8Txtl5f2M0ETMybikGA58UcY4SsanrGojANDkMs9JCE1HotEkDMX 1PrLGX0G0xT1ckaZPfvN0PQIHSoEpQN0Eg+jUrr5WtgwZjCY02Ub+zi1xghELudxi7EkwlgU MYsAXnUvjZPKlY+5PjB0aceiSwoPG7c/23E3D23y9cg0v1L/WuooIT/HZCfdm8HOCIwoBa6K Q5PmlOohz0TkzKobtoNvSFx3MKSn5L6CsvtULJReJXiWsbw4EflalPdJuy+aMjPzeWu4vT6K DObEqZiuKPPinsF5Mc5MH3QNwRySJavsNSEwd49JPcAG86C6v/3y3Hu+qgQ6lbiozn+cX85P D+eLj+fXx09P1lVvGte0CwEWXpfrqbO4u2deP1bRv4zC9nViNCETV6Ad2+HijGZ116H0rDao NgvzWauBc65NDcw+XVoeewaqjkUaQJSu9OxR6eV8Qb9+dKgCbyRtqmlQYzKIAg6QNtEqKJc7 okhM1+t3qeIk5qvJO0OBRFZEOhNXo4LQxmWgB6V9N+Mn+rW3Q2gl9jBwOy7SnEb1Jiayo2ai rKfvjgxm4oR/nQzp1mq5LqqU9ntFbFZPJ7M1aGhZlqSBI2dXWWeIoxjpQx6OF1HeiEABxSln gRNlR3KM6YEUopy1TgJ3czolq+naO/r0g5eeeCLNDVTl2MUxPuSxdTHk9wYG/XISmKYdwYrW wjq05eIhK5PhAqO0qdubqsSI8Fk+W+/L2K0+YukVy9qGutqT+FjMMHZUciy9T1Ue0iDjgG8x 42i4ZIlud8z2YOyQV0Ue2Pa7Pk9tN6LuQz//aYfZV+QhX2NzM5rUAJz5wLqyYRWswQhflAbF 6D4F+biMj/PQSDuklMeRQ3O5YeHKlqEzp0mzmgR2kPlqs46PrtZk7DAz88xc8Zo3ALWSnzaH yCYmJXRRN+QlNt4n2DoBDrc4rYVwx1VCqTJ6pDdzJdSSZfr90afz0+ODTFbh2+ZBJeN5Cmzt OsfagTsTp+5tzCpd7OwyIth1qczrRRe3GsGtg3WfpvRhzqZZz4nCm/igx8N4jEX0FjFb8P0z DLK1xDEUmPSRRgpvHDztS5w/Pt435z+xrmFATMmNz6mdt4wmupk5iRFCVNOAEXCgWa6Wgd1D otT+Ud+6Z26HKmYi5KvpE+9i/uPEwi04SJmKneIzSHFUeUTGicR2925zRVqmE/YPGoH00T+j n/7D8qf/sPzZPyx/5pZPU5sR4DyUGs0xgncGESlK/g6FmowjIwg0RzURfqT9SM3zf0ANMyje 0uddnxjW1w+WTF4SWzT2PbGHanmzH+sYSbNPtz8wzpJUsR6ucDNW00Zz837LJfGPsbWezl2b i4kkI0Z6NEO7wuXoefpDxanpEOgmRTGyKiTBcVRsracr16pvI30hGqIlnXdtmks70K6HJGd0 yA5h7YTGZvleOmv6zLdTu9VI1T+WrVjUDavgbzyfQt+VZipSmZV3l5jx6yWoKkUck+OjkxP3 HEtydjmHYskRUfjVKFo2t4zrLko6MWg2XZ2czJQJPbIWCbJOYABqRDhh5TVs23G7nqwXNlQI D5wCmJUyibL11LeHLydT+tlYqqtZTMgDQ4fG7+3qFG9mXF2EZiRU0ZrPEaAXFdSK1NxDN/aM H+BziskB7RaWDdChsERRA5gSTgPajOyN0MyHQhVqNLyaFT9ukzUx2RNWGDgDuiSLcMGaeO1A ywMJ7wpZ28uk1lMhEPoxxn0eCDCFNdFzeGuf1qUmMA5ysSyWBs4IIAjFiR3ptE8tXlR8lAHV YK8qAd96wGOa8MKnhpFWzVxbwcj1tLAjiye6Kz2o4mNpzzzs4OZQwYko2MdIcr2s4bhTujQO Iz53aqxdcNdKD6HHyoPLnvYRJ1mrE+2x76oZ+eS6HmqZWVE2dV9OrWBuul1TgpL83AmI2veA V4ACz5w0GkbXTEPc9xR2/aVIW/hPGhiS1Ej4KmX5fmvtX1cof0+xY2XabUWX1164rPVKWMik VvGc12ZyXwRywY8zt5jqjgULWdWb2dSruFqz1ZwFzOcaH/IqHfD044oBT/usD/iwTVDhQ6b7 noAFDus9QRTsF4mOHXOogvIp1V2rFemv0mM35EebkD1WYemaNiHro8IuCKbNNyoDcEkOPMBH u2WzvKQ/e288NqTAHtAbqrtVAFSiMBYsDFDL3WTurwNArHaT0LUQ6mV7mPbBcmOGz6R3tsti j9nxfIZoGjUPoA51BF9huBx0cXUI7nYzF6QWvWQD9jPXfmxhm5LGgrCyr6r7Sx43vFc9j5eL PuKHbUmtL8sjZs62cH1n8tNtXtTtHKNpDxRkv2vSRYDOprq0CxzY6fHLcfzCZdnFz95pEqvE 8sd4xQNZLTs2No28Ggvw4mDHasVAMtNQf1lEswCPEruYjxchhzrdpkduzw8Fa8vKcYFBS3fe 8AxjmmKGYVovLKvkB6rFVxVOrQhSK8C7a1E4YEiohxpjpfZka497G78JpFFUfMQHqpJhjTTo auccsBDe5YAOsJjtBNrFh6brVM7H+EAuxf4tkUbtb+oyzbGTKJj3PMdAoTZCNtigwcGjHDAM Cv2Mgfw6MDT7mov2oN/dGEaG+vn7C3o/uDcjMnqGFRJOQcqqiOypWldx56bdM6SvEdU3ZIO7 y0CfRBN0ididMB79m6se0ReZ3MDJOgoWuG0aUU1gSTslpqcSxapXnHyKtRxpAt7ShiqrEubW AyOzSP1qAHyZwvCESpKPd9yy1Asqv7C8jMWqaww1+9Vzp7ZpYv9j/QBupMV6tJPohLXjGqbD lMRZWa+m0zAf4lQTzMMkrvhI9Sj4oDMaGHxWhtuomCxTTFuzd1wAFQ7khvNQ3qWQSwyOA+Hy RWleIrNKd2hNwdrlIkqt7QU2Lr2g6nIdOHkCzXElZIyPNBDdjzUCtoIypf2hFLamnmR1zVRK hut60b1eDHWx9Mdoq5IYRNFcvTcyH9BmgExby2Cv+yMWdGN6AtEcyCe7WqEqYOjIghtB7Sa8 H4fG3aqQV/TZZE2a8bHJUp7IsM/rOS5RURmWnh5mvijQwPLgytpUnHD027ipPIlbN/gO0JpS TQx9Op0QC7hfP/ri1xGAGgxVFbU1KB2mCDjcyYCPsMZKHE2Y4yNGZ2ef6QUBS7OosExL2GoB MLLGzsWxFXtqNNWTz3aOMrC6gRksnMKB3SvJsFtDV0DWcBC3+jObyS4UTcdKkbFqixJLZSfo GqLRyoSNdufU9C7Ffa9MYqcGJW6A0KDElRSL5Nprg9zi4Uixo5sglT/h82KXnoJ6cwD+Uhek I512WsLu/HR+eXy4kMiL8v7TWQaF8uOxqq/xEdiuYZGZEtfFKMFm6ZcBkv6hITmx3mPNrl8+ m9rWLlvdOyg0/DT7qjjsDIt/sVVUJquo3SkoOUH7CeaRGPv9JO3L7c8KGzhrxDd+fRJDVWlM E/8jnAPeFyrS0/nr89v528vzAxlGiWPAY3TBIruc+FgV+u3r6yfi6WsJs3RopPyJIVcrF5bX LkTdMWFEPmv5OjgEUHuBS1YLLgLl1IKORK5I/EwNQ19YbTb6vjjkyQ3IBa/rQU5c/Lv++/Xt /PWieLqIPz9++5+LVwxT+AdM4yHorgp+rG/m6mcy3pUKFBCz/Eh6Rmq0dKNh9cH0zlao3QnF VppvCxcjTMwQV5lgR/EpPVUdNnuNEnG4UeEeZh3TDFSdF0VJKzCKqJwx+T0lrxUFxbDPl7lX bqZSbKfUUavH1tuqk4PRy/P9x4fnr6Hx6E48MmkAteyhOBmM18q0h0A/pJimC5Yl9xARma0l 2ZP85afy1+3L+fz6cA+y8fr5Jb2mB+v6kMZxy/Ndar6oR0N9nRU3NmTLzJ3wYG4s16DBJ8Zl alIyhhaSvC70m3XN8nuMqRiE/xEnml05eujzZ5bpkSsfQDjh/fUXXYw+/V2LnaXGanBecnLt EyXKmviT3IGyx7ez4iP6/vgFIyb2q9xjIEsbbobrxJ+ycQBoqiLLtH6ta/7xGnSU78G3gAgv rlUMW+lI+JGVjiICq6tilgcHQuWNy01lmzsQUcdlyNkC0YQrRvdymuJXtuT6+/0XmODuAjQ1 HDTZYKynxLAIq00AtNi25i60jlIHlGWx69RQJhjQMyuto53EXIs0gLH9BnpQmfhAD6a3KhtE OSggoYy97LarFuWs9GC1970r/iX0Js7rupPWtiprzUNyOMy16d2IVXBkQSu7If5u67gDDdun BOrLBvokOFAErsWNIgJptnqKFZmLbChg4rLrXuAY0CkJtS9oTMR7vNFXPwZ+FiiZvosf8Cu6 VcwDiyJyI4305KEbP4OCekhmoGcUF4s5CY0nAS54IIvbQBG4eDQoyJvHXpPfVVvyCJkWCRwG AgmppPqgrCtBvLRmzSbtscgatpMPi8ssqD1I6rlHbWsTjSHRDtJKp7ScTo05PX55fHK3wn5R U9g+r8gPKa/94VjgNrKt+HVXs/55sXsGwqdnU3hrVLsrjl1OtSJPOMpyQ48wiEDkohGAqchN FAFqTjU7BtAYdrsumR33yfoeToPp0dfgu0YkvgKIFj19mxQd6q402kYhbRwGlWkzFNriO6AG 40ffqS0/OnGUNQk/NbG831LqyF9vD89PF8n5fx8fzn5WD0Xcbmu2WZgONxruxo3WYMFO8/kl LZoHkmDmS01SNvkl7eShCdQehX4dGH2E4KNq1pvVnL4A0yS1uLwMRJXUFJjbxU3e4FHAsoK/ c/N5DOy9RWXky9Km1qRiZmh8BeWmmqHVfVCLt8bkjJppm4GW3Bi7Ll5ucZFasgdgCKKvI9Aw sSsFHahIHHmE1o4jHW0GLb5ols1508bGpQ/C063V/eo9SptzOu0Nan/mi9SErUGRTpLKalxn ra3KODWqU3awrYhnutcGeakt1WSlasWYPd+JVi4s3jsZSvMusdPZgvwKr9d5oHPTQPaPvIlI +FHwlh4HZYgffqio2zZIzioC1O6zOIn9IhSyia0zJiLwHJm6th4Hj3d0dnH6pOsVxqsssBdK tJr3gZq6CyO30OQmxFsfzdCi1xcXQS72aXSkxCbiUrFziwMxTWkGGmXGeNWgtimdzleX9dlO eGVf18vZhLo4QKxMGTO3i8rKGN+qwuGq8RB2QEAFrGsfYkecGaBe5ABEdVEqTRCeD1PzTaUi 9J9qSfgpMMeVsEqEcxOBGJlsxnwgL4EnZxIajzNhs+cO0jplSIgWN+qSxeKxU+eCc4bQ4kys 47shYdlsHZdZ4kAxlqlbu3vZbyMDaRYVTpDBrXocDKxTP94/26AuMKQJSrkVDFHD9pUnVpqb zAPYCTIReEzxSaB9tybh8gbbU7AwON8DqJZElrrqGofJ2FxhqZtJRDGUIuwCTvC+D/KykaVk oEs9K2CNxvhdmdoxWTs01EybiLtN7I5NPapu39JzQVZi7E81aFwTzWzXQuNdptOKrqb9WnFL 70LVde/5Ai1OOCXpUEgBIeZ2tA1eCM8bcaDv3bRmi1WAXhalOXlMwcB+O7Qhl/EeE2WaFVg4 UdMzG7aI1onPONjc3KnRNwk0+SudNbnTpzDEE6z2OJ3Z+WswnSVMnLQs4oaRaSfku+fYtr1Z ONbsSaOBxp7qqZU5QkKlRXdx6Rfm75o2ujcOU2D8FbPMxdpRSxQMhnflweTWtLtx4VczM7Ca gmFm0/Ta51/vSYHlgRQi3pcg5lh1IqNWKxp7ozGAOpU2q7w+QFcXn5/e6yNYlzJmFU6ulQFV JrSoQAI71oqGyQOrX9iYf56mCEU1ltj+ObVf9Ih7m03Q7rIDwRr6s4Ud67qX/3PrCYWD1O// VRj6/e1F/f33V2kbGAS2DnraAnooxgDKB7VwDjLRCO7UHJmYs9nZSCfeL4JilqvUQjHHEFvW RgNofVve1UVtmYoKb2XxmOcWoO/LpjMm/YPpHdmjk/HjqKzeAym+1UMiuzkDTvKMBDryxyid 7keLo+4eCdihMkbLzpNhNQg2VEQM/NSQqp3PnvST9gZORdaQSIITjaLeViJFXs8ILhCK8yCp Eqcu6T/KGkaAFc9e/dCakSHpPeOKCjbbxp1iCulP1g5Tw2qzY2xbWJYdKYmENPKELWNX2J2t VsgJJHRwfNUyxM8CZatF7Jer4oRQcNxVcIP3GoqRQGDHyAtyfNX20B6rk45qGepmTViBiuOW o8O1ry6lySU7gIpStc6KtQdV7p1yFgRq0xR+v0pjCNQFzB4aU6ab2LX0tfd6As4i7Wydw2Gy tjUcC+mKCofGZ0mU8wBU12OC0cnOYwyhh23tyS8An+qw6EP8PvE6Aa/p5MSrHYzay1GTSsyw y4gqYp4VDYmSWpPfQO2ZdI2PXQNYnE0zAm65ZA9QPa1cuEzinJd1u+WiKdqjN4V7qn0tRzDQ W0NhNd0SfGtLDKR8POacvgFeMemf4tEPL1X0lmTiuguIRP46TdymDDcUuF5xbAONsQnjOqWk jE2UKKL3CvRFeY9qbkvuzGd9ukhK9bzP5UCj5XSUBEGRoCldAWQrBNqSeNjSF9QWzdiG32tZ I2vdpHGGsUf5fTWc4vbuhIEDkjQkTOfTCfaIP14DxUJThHSeJt0vJitqv1QWBEDAD9ICBzTK WrpZtOXs4H6vjL7OxmRRMLG8XGhJEST6sJpNeXuT3lE+yGhB0uc0WxcBzblMS+50N0B3Ik3t h12IUMegK85FxGAGCRGP4YnO6k18cucM7fMDlV+Ffn/SvzPpz7y2am1Ui/dbMaPc04Vt5xUq KDBNqF2IlRZ/fsEAEPcYC/Pr89Pj2/OLb4TB66lExEvQOkrtcdhxOvJ5fzgx3QGgIxf2r85F s72pUjt6nMRewapoWtcb1PpeMCtdJHv6+PL8+NG6pcuTqkgdk1vnMabJuzITZpzjMVulBZB5 NJ2fvbV+uAGQYGlcSaktZcAXcWG+EdS3LHx7MP1WFHl3QuLoqCn86jo8FBisEl9gdFVavjmy RuIztbtudY3diHZC3eGzh1ttUjWjLu40VneeFDoY7taooReFXQ1OW4/bJQhCWR5tUep8Gr12 OQVhVhvouV1Jvz3R2ahDvSMdbsnBqohpIo8p+bFiopuq+5uLt5f7h8enT1Y+ia70wJWGkinN npzORJEdF2iYGHjCX63YVZ3JIoxpmWkZ0r7yZQVqj7w8HEHJGwai4I6w1gn6+qa5FPGRHt+e DoVn61pcXCItaGvT7b1HpjGHHZPGCRbvT8WMwEZVmuz8pm8rzu+4h9UMlJh42XPgkOVVfJfa Rp9ia2LCvZBs6Wg5VheJMthJpqIPP9qc30ixlxcJtzGCycOZdhDwEftDRMLhr3O7bKDcgLeI rJ33kiYq4tt069RfxM7FLbVWZWoA6PkT7717xfcvb4/fvpz/Or8QXpKHU8uS3Wozsw74GlxP F2RyDETbHYSQ/qFk5+9IVNxrBiAnS0NK1qn1ZAR+SR8Su5I6S0VkB0pFkHaQpJ2oUYxU8P85 N28WTSjuUGGMCuAZROZjyOsAUvJbYMAgyyBn0YRv5nSKBu/L6lDCDCQ9Z9Tuo9+gmQag7jaN QKE7xjW3tlB8Nnd9YEnCSe+I/sFUA9oXKHCN5Zqv5LlTovBeX3X5tGy3HjmRt49fzhdKXTRm 8BFOmQlrOKyRFk7vtSV0anwoYl758VMza201RoPaE2sayuwM+Ln/yVzWV9QpLJSYmngdTc3j A+h8txYPi9Z0fNCAoTgfZZRicrEIZkySyEGtNGr7ECUz+1efTH3oNhHFsCuYWg9PoWsBYzLe A4E0viLg6IDR9q8X/KKCnf7BqemD0z3DHajROYFynNbJLxrWpPj01Kji1FXZl40Q/WSsPdLu uEhyfSga+i7kFJojFgWZVxARRS6zgNVxdYhcvjQO0xOktFaHVDesojfVU9cvRNVwTJlZnR81 7sB3EHpMeqycFvppszM+PnF1QHsnTNhbP9eEReuMpwKyGuZUQ3JR8S2+dU23NAN5mqkGU5vx zJsUEoTzZ/QLNbG9796RGR2NLzMkRnWnOQ7qA/nIL80/cBmxnaoUbb0Vr+uUDF6NfWoe/0Ki CBeCLbcUpI1UbIjS5CzNOAbHv3KyiaDjK75yv7UoaKZ4Hle3pW4TBQaFdFdbOBxnq986UD9r DB2sQ0WHFLQmmH3pLme4a9FehH1GSQ1J/BSTqQJJJ1xaX2WKgjqEohgZSpc/MY2iNKLKHX7L TJ/gsgKgJsN1npoBdRTYWSkK2ID2bsC2AoTb1AXMnK+Ug+Ngajg0xbZe0EtAIe15Ch1iAWLr NKnTGpoEBYxNxm6dxTdAYVUnaYWaUhKQfxQty27YLbBWZFlx895XaZ5w+vbfIBIcOqcorQFV x9v7h89ny4t6W8s9ldR3NLUiT36pCvFrckykyjNoPMM0q4sNXn4FrLyHZOuhunrospUDeFH/ umXNr/yEf0GRDNQuaqAM1X3cepLRUFhGkHmz9QvttMExzpSF7/X8/ePzxR8Wx/1CASXEcjRF wJV9qpcwdEowPXklsMQHCaKAjclMhi1RoO1mScUN8XTFq9ysynFxbURpT2gJeEdHUDQhTUlw sU3auOLMTt2F/wybV2fJ9LtpUN9rlXsXY3JwYS7FiuU77qxoltCAtjJ8btjWIeJScrvadAdE g1bt5ZLSVHunKPhdZgd3d444MYs6XBjlf9Uri64y1EG0cJ14cGnh7dOyelhMSqq0EVuNRXx9 EIJVtJrSl+BNBIfE2OthS5Y5XIINu7MizClYhYdBw0gZpU7PdxBMBYnPVBJVJUGQ3dlZjDs4 VktLrp6ibqjXywrPkEMjmIP7cad7uXBfrRqacmj2PIcDAbPVjbhiwtq35G+l8CTcSs2uUYJk vIZzc72352oHU5qQtzeQVGofI0tBo5soQYnJd4GQLi6pNBaNVWnS4cOk2HYx7ulCsqkn0PPM /zK7CzxzHAjoG9Gh7rtxfGAm9fiFfBQcybB0d8a87wm4iHiSmL6/w5BUbCdg2qjBUwXMe6Xm 5KwbTIh1chUaEZI8+9L5/Do/LXzQkgY5ml+l63EhEYuvMIn0rZrR1indIXDmdZAuKhrKIUuR gUjyKipr2FjJmX9bH53uOoR6i1e9yjkIdQ0L20g6Au+w1mNGLTwdEWHi6VB3qWXvAnX+pqiu zH2WusXKjIGCH10gl99+enx9Xq8vN79MfzLRmPVEaimL+cr+sMeswpiV5bpr4dbkIzaHZBYo eG0GpHcwIWbWplumg5mG2VxSLgoOyXzkcyrytUMy0klLKjy/Q7IJfr6ZL8l1ZRO9PxCbeWgg Notw7etVqO1wxsCp1q6D306dMNxBKvqNMlKxOk6pHchkYGo3qwPPaLA3zB3ivXZe0uUtQ+VR 0fxN/IYubzoPwBehiqaUbzkSXBXpuq3s4iTsYMMEi1H8stwHxxx29piC5w0/VAWBqQpQkciy bqs0y6jSdozT8IrzKx+cAlfqebTVHxKVHwLxAK2GAn+BPkOS5lBdpfXervjQbK2ZfshTnMLU jVLR3lybhyrrXkIFQzo/fH95fPv74vnb2+Pzk3EWxeRiZjX4u6349YHXTVAFxCgcKWwWoGgA PUb0t888uhziy6ZCV9Okq7bbnZQBbYCb7LTJHo4NvGLeyWHQrfR+1yZwYJOO902VxoHQhoRt 3kPSChDm4N2zKuE5cIoWNbSztCwDBYJZZ3GPaATVbqEA1FYMdQ4vA2JJIWDIVdiTd9BtyZr9 bz/9+vr749Ov31/PL1+fP55/+Xz+8u380u/NXfy1ob+YsQqyWvz205f7p48YQ/Bn/PPx+b9P P/99//Ueft1//Pb49PPr/R9n6JLHjz8/Pr2dP+Gc+vn3b3/8pKbZ1fnl6fzl4vP9y8fzE/pC DNNNB8j5+vzy98Xj0+Pb4/2Xx/+7R6yZIDBtsHXxVZs7+e4kStpXobP7dpDG444UnQIMSnOB BPjo0OFm9PEZ3PXUVX4qKqVQWkc0mNsouZTN6uXvb2/PFw/PL+eL55cLNUJGTj5JjHZkK1yg BZ75cM4SEuiT1ldxWu7N+eQg/E/2zBROBtAnrUyb7wAjCXst0mM8yAkLMX9Vlj71lXmh35WA B0ifFGQ06AZ+uRpuB9RXKNekTn6I73dljEXnzlNT7bbT2RpOsx4iP2Q00Gdd/kOMvjQgDB6H 33//8vjwy5/nvy8e5Az89HL/7fPf3sSraka0NaFOUBrHrdweHSzxZwwAa0ZAKwpcC6Klh+rI Z5eX003XKvb97fP56e3x4f7t/PGCP8mmwYK8+O/j2+cL9vr6/PAoUcn9273X1jgW/ogQsHgP +yCbTcoiu53OJ5fEStulNYwk0XM1v06P5F7Tt3/PQGRZNCoIngzlimL81ec8iom64i31NqVD Nv7sjokpyePIg2WmDVXDim1EsFACZ2EeTkR9sMO7Qc26Xk1AbWoOtDdexy2GjvG6bn//+jnU c4L503VPAU+qk23gUVGq64nHT+fXN7+GKp7P/C8l2K/kRArXKGNXfOYPhIL7nQiFN9NJYkb3 6OYzWb4xk90eFQl1MOmR/uQXKcxg+XLKb3Qlkqn1sFEvij2bUsDZ5ZICX04p+QsIMndgJz/m flF40xgV/g51U6oq1Ab9+O2z5ZLWL3K/3wHWOqGsu4Eqbrag04+sRyY4nE58yRdLxz0nP7KB owYN4fSpvRPgAcd/jd7Kf0eY1RLQ71JeldYLvr77FwSbzU3hdorq8uev317Or69KG/R532as oc4hnXi6KzwG1gt/sWV3Cwq2p2Spa6VVkXdBOX7+epF///r7+UWFRHZU2G5e5HXaxiWlDSVV hHdk+YHGkKJIYaiFLDGUaEeEB/yQNg3HF5eVdSYxFBodpJrSdRAlmQgPRE9mKJnBoiramdCh 0pptsBSeS/WqiDDi6dgkQc47zy9TEf/y+PvLPRwGXp6/vz0+ETtGlkbk2pfwKiamFCC0oO6e YI/RkDi14EY/VyQ0qleUjBLcLrQJR1YX0HX7BaiHeKUwHSMZ4zmoQQ0NGlGzkKjfJdzm7G+I JrD6VgiOxgBpScDXcEOpBrI8RJmmqQ9RkKwpBU1zupxs2phXTbrFGzvuOX6WV3G9Rg+ZI2Kx jJ5iuFbXpSsMZXaBQlb6TpoTBSg8njSwHOoCI92h6aHk6u5O3voON4xqVZxf3jDIIGjNrzJp 7evjp6f7t+9wWn34fH74E47DRlhgeWNgGnUqy+nHx9e//fSTYW5ReH5q8NHB0H0h20yRJ6y6 deujb2qwYFhh8VWW1k2QtYFCygf8P+TQJqr4sVC9pAjcQgz80MTOv+UH+rMrLkpzbJ70o9p2 A5IF5VPF0mTZlnagEA1rIzj7wV5SUfmo0FGTVa30orBfMLOQ81uUgu6E+TmMSd+Fl8Awdocm Ne+IOtQ2zRP4g9FoVU6Wbs0WVWK9s67wAj0/iMiK76tsfmbQlT6kRZy6ntR1I0q8OU1NnzRQ jOGYB9ueBZoubQpfd47btDm09ldOWj0EBHIm2CQgWXh0S+ZINAkWROmsugktB0URpbTWFi+t fcnepWLjtgtkqn9giY0sKv0JxZhjeVKIQOM1Dahfvd/HUBZC1RW+DcfbeNybM8tlSEK18mcw fFcQJSOUKhnUO5IalD4aTvMHyiBBLsEU/ekOwe7v9rReejD5uLT0aVNmjqAGMjNo3ABr9gcR eQgMHeCXG8UfPJidaqVbYoRdu1Lh/7NC2BGEBiiWZ66uKDZ01sj29JQupEeWOQ6gJ1ZV7Fb5 eJi7MIbQBnlwxHwlQDCg9ky+qjBf/iEoEYZylCOP+GQVHzI7cbwRDGxnrMI4v3tuhySBTtzL 8mreHEpJbPkVD/jbPJbobVF5coimis00RD0JYmFClQQziMqLvEO0wpKAiO1RZVFkNqriHrX2 QiUwqFs7PhsWuK0dDHZsv+kYUnmXqZlkyBfpNd77NhvFXJuSPisi+1cvb4xhzWzPqn7uNoVI bRmY3bUNM0rE6GqgaRo1ijK1vM+SVFi/4cc2MSov0kQ+E6wbMzjttsgbwxVscLYFOOnGjfTr v9ZOCeu/zGVU46PXzNxB650zwvLeJOFl0TgwpdnAhgvK4qz3Dqxh57AGvcSQMPZTyOgD2wUC ajcyjfdoxiBPcRmWcj7FK78iGd4E9lcunYYpod9eHp/e/ryAU/fFx6/nV/M+adBZUFtSadAo lVlhY+aGl5NdA2pnzKW3fUInJ4lVJo02K3YZqD9Zf2WxClJcH1Le/LboJ5XW1r0SFgMvyW3O MLlDyC3IwnePfw0lWkQFnl54VQEd7c4d7Mne/vL45fzL2+NXrZa+StIHBX/xr423FdQkvfx/ m05mi38Z86LE3IbIlekbyzFeJHqwQ7+ba07LEvVQBF1+BWvMLcPFyCrxrZFyVu2U7B/l38qy pedccv79+6dPeM2XPr2+vXz/en56s93L2U4lbKuoQG6qBaYnWweRcu+mZXbK1B6LN0OSQOD7 SXKZOSXhpWjoXlruHlc7MxvHIapNt4g4lruLhLYR5k2yPdkMOOnoiuh6n24bpwbMqtze8arw SzvkFcczfZRRfHc1Fpn/Jc8P1Ftk2VQ45QIFal2pk6/lh0bW7V70kOeZZ+vTd8R9GYb7Pq5n OLPyvHZeN0lMWaR1kaehVATZIdIVk7fXEo8Kirl6sNWaWVBzMs6MDXZQGyTBURg54ZyWDrjg PFah1uUdOlm/FJv42mRrpSnScwtdCXFfyAv5bi69g3mZJFo3dm/fh55Vtyn486J4/vb680X2 /PDn929qDe/vnz6ZbyeYzJEIMsDSwiwwPsE9GFYqhcQdAvNOT/5lPOodq1N5zoA4+fgdZYg5 EwZHAALtdjtWfMV56UwJdbrHO75hnv779dvjE977AUNfv7+d/zrD/5zfHv7zn//8j5HFCB+3 ybJ3chf2lY0bkCoHmdtodIf+B5W7jQL1CQ5mO0pUDFurxRIKbpBjIBRqUMZBHVfnSK9L1KD8 qZbwx/u3+wtcuw9oMrGTgMkl1CasQa1Xvjb3IjZY4xwoUln24wM9wDaiayK2LtD1W9lyeu0z jF4acGGSHkt4boAl6PXJ/cuDw57+bLq8kt1NP1OyPzMVreb8+oZjjrM9xiQh95/OhlPYwVr/ 6tW2l9NxeMztwvhJtrTDDd5cEouTIPSgVgsSEB9xcWyVfmZnXq1gs0RjEZaAQ4BXKWTjx1rq TEvQLvCVQpsU8QHd5+khUjM4SlHRKiq6xx099v8BabaVSbmuAgA= --LZvS9be/3tNcYl/X--