From mboxrd@z Thu Jan 1 00:00:00 1970 Return-Path: X-Spam-Checker-Version: SpamAssassin 3.4.0 (2014-02-07) on aws-us-west-2-korg-lkml-1.web.codeaurora.org X-Spam-Level: X-Spam-Status: No, score=-10.3 required=3.0 tests=BAYES_00, HEADER_FROM_DIFFERENT_DOMAINS,MAILING_LIST_MULTI,MENTIONS_GIT_HOSTING, SPF_HELO_NONE,SPF_PASS,USER_AGENT_SANE_1 autolearn=ham autolearn_force=no version=3.4.0 Received: from mail.kernel.org (mail.kernel.org [198.145.29.99]) by smtp.lore.kernel.org (Postfix) with ESMTP id 8B884C47099 for ; Thu, 3 Jun 2021 17:13:58 +0000 (UTC) Received: from kanga.kvack.org (kanga.kvack.org [205.233.56.17]) by mail.kernel.org (Postfix) with ESMTP id D989B613DE for ; Thu, 3 Jun 2021 17:13:57 +0000 (UTC) DMARC-Filter: OpenDMARC Filter v1.3.2 mail.kernel.org D989B613DE Authentication-Results: mail.kernel.org; dmarc=fail (p=none dis=none) header.from=intel.com Authentication-Results: mail.kernel.org; spf=pass smtp.mailfrom=owner-linux-mm@kvack.org Received: by kanga.kvack.org (Postfix) id 66D4D6B0036; Thu, 3 Jun 2021 13:13:57 -0400 (EDT) Received: by kanga.kvack.org (Postfix, from userid 40) id 61D916B006C; Thu, 3 Jun 2021 13:13:57 -0400 (EDT) X-Delivered-To: int-list-linux-mm@kvack.org Received: by kanga.kvack.org (Postfix, from userid 63042) id 3FAD66B006E; Thu, 3 Jun 2021 13:13:57 -0400 (EDT) X-Delivered-To: linux-mm@kvack.org Received: from forelay.hostedemail.com (smtprelay0248.hostedemail.com [216.40.44.248]) by kanga.kvack.org (Postfix) with ESMTP id D3BEB6B0036 for ; Thu, 3 Jun 2021 13:13:56 -0400 (EDT) Received: from smtpin20.hostedemail.com (10.5.19.251.rfc1918.com [10.5.19.251]) by forelay01.hostedemail.com (Postfix) with ESMTP id 54D56180AD806 for ; Thu, 3 Jun 2021 17:13:56 +0000 (UTC) X-FDA: 78213060072.20.B95816A Received: from mga04.intel.com (mga04.intel.com [192.55.52.120]) by imf13.hostedemail.com (Postfix) with ESMTP id 1DDF6E0009B3 for ; Thu, 3 Jun 2021 17:13:36 +0000 (UTC) IronPort-SDR: LD6CsUEH34O/oN2tNiX9Sc8hPsjMUXA8bowi3qSSNBEgJXJzu3KHhDVo/MpX8HzmkOGAWSZ6OZ boHxufTsWHPw== X-IronPort-AV: E=McAfee;i="6200,9189,10004"; a="202240828" X-IronPort-AV: E=Sophos;i="5.83,246,1616482800"; d="gz'50?scan'50,208,50";a="202240828" Received: from orsmga006.jf.intel.com ([10.7.209.51]) by fmsmga104.fm.intel.com with ESMTP/TLS/ECDHE-RSA-AES256-GCM-SHA384; 03 Jun 2021 10:11:09 -0700 IronPort-SDR: FOiZWu9uB6oukGRXLH8+8R24UTE/AVfQcwXYan3sKa0IXLdcxk8a1ziFqWGbxCcG9C8N8Ur258 IpeFrWQGEsjw== X-ExtLoop1: 1 X-IronPort-AV: E=Sophos;i="5.83,246,1616482800"; d="gz'50?scan'50,208,50";a="400658873" Received: from lkp-server02.sh.intel.com (HELO 1ec8406c5392) ([10.239.97.151]) by orsmga006.jf.intel.com with ESMTP; 03 Jun 2021 10:11:02 -0700 Received: from kbuild by 1ec8406c5392 with local (Exim 4.92) (envelope-from ) id 1loqs2-0006IL-2b; Thu, 03 Jun 2021 17:11:02 +0000 Date: Fri, 4 Jun 2021 01:10:01 +0800 From: kernel test robot To: Mike Christie Cc: kbuild-all@lists.01.org, Linux Memory Management List , "Martin K. Petersen" , Manish Rangankar Subject: [linux-next:master 6351/6976] drivers/scsi/qedi/qedi_fw.c:1039:45: sparse: sparse: incorrect type in assignment (different base types) Message-ID: <202106040154.rvggrEBO-lkp@intel.com> MIME-Version: 1.0 Content-Type: multipart/mixed; boundary="IJpNTDwzlM2Ie8A6" Content-Disposition: inline User-Agent: Mutt/1.10.1 (2018-07-13) X-Rspamd-Queue-Id: 1DDF6E0009B3 Authentication-Results: imf13.hostedemail.com; dkim=none; spf=none (imf13.hostedemail.com: domain of lkp@intel.com has no SPF policy when checking 192.55.52.120) smtp.mailfrom=lkp@intel.com; dmarc=fail reason="No valid SPF, No valid DKIM" header.from=intel.com (policy=none) X-Rspamd-Server: rspam03 X-Stat-Signature: 6dzbu95qgn1gr1kz94zxk8odbib3s6za X-HE-Tag: 1622740416-67847 X-Bogosity: Ham, tests=bogofilter, spamicity=0.000001, version=1.2.4 Sender: owner-linux-mm@kvack.org Precedence: bulk X-Loop: owner-majordomo@kvack.org List-ID: --IJpNTDwzlM2Ie8A6 Content-Type: text/plain; charset=us-ascii Content-Disposition: inline tree: https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git master head: 3ebdbe7aa5dd825d609c3433c35c13b440a61c52 commit: ed1b86ba0fba3d586cd53057551a95197b0a37ad [6351/6976] scsi: qedi: Wake up if cmd_cleanup_req is set config: arc-allyesconfig (attached as .config) compiler: arceb-elf-gcc (GCC) 9.3.0 reproduce: wget https://raw.githubusercontent.com/intel/lkp-tests/master/sbin/make.cross -O ~/bin/make.cross chmod +x ~/bin/make.cross # apt-get install sparse # sparse version: v0.6.3-341-g8af24329-dirty # https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git/commit/?id=ed1b86ba0fba3d586cd53057551a95197b0a37ad git remote add linux-next https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git git fetch --no-tags linux-next master git checkout ed1b86ba0fba3d586cd53057551a95197b0a37ad # save the attached .config to linux build tree COMPILER_INSTALL_PATH=$HOME/0day COMPILER=gcc-9.3.0 make.cross C=1 CF='-fdiagnostic-prefix -D__CHECK_ENDIAN__' W=1 ARCH=arc If you fix the issue, kindly add following tag as appropriate Reported-by: kernel test robot sparse warnings: (new ones prefixed by >>) drivers/scsi/qedi/qedi_fw.c:285:29: sparse: sparse: restricted __le16 degrades to integer drivers/scsi/qedi/qedi_fw.c:287:28: sparse: sparse: incorrect type in assignment (different base types) @@ expected restricted __be16 [usertype] tsih @@ got restricted __le16 [usertype] tsih @@ drivers/scsi/qedi/qedi_fw.c:287:28: sparse: expected restricted __be16 [usertype] tsih drivers/scsi/qedi/qedi_fw.c:287:28: sparse: got restricted __le16 [usertype] tsih drivers/scsi/qedi/qedi_fw.c:288:32: sparse: sparse: cast from restricted __le32 drivers/scsi/qedi/qedi_fw.c:289:35: sparse: sparse: cast from restricted __le32 drivers/scsi/qedi/qedi_fw.c:290:35: sparse: sparse: cast from restricted __le32 drivers/scsi/qedi/qedi_fw.c:293:37: sparse: sparse: restricted __le32 degrades to integer drivers/scsi/qedi/qedi_fw.c:331:13: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned short [usertype] idx @@ got restricted __le16 [usertype] rqe_opaque @@ drivers/scsi/qedi/qedi_fw.c:331:13: sparse: expected unsigned short [usertype] idx drivers/scsi/qedi/qedi_fw.c:331:13: sparse: got restricted __le16 [usertype] rqe_opaque drivers/scsi/qedi/qedi_fw.c:366:13: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned short [usertype] idx @@ got restricted __le16 [usertype] rqe_opaque @@ drivers/scsi/qedi/qedi_fw.c:366:13: sparse: expected unsigned short [usertype] idx drivers/scsi/qedi/qedi_fw.c:366:13: sparse: got restricted __le16 [usertype] rqe_opaque drivers/scsi/qedi/qedi_fw.c:384:41: sparse: sparse: incorrect type in assignment (different base types) @@ expected restricted __le16 [usertype] opaque @@ got restricted __le32 [usertype] @@ drivers/scsi/qedi/qedi_fw.c:384:41: sparse: expected restricted __le16 [usertype] opaque drivers/scsi/qedi/qedi_fw.c:384:41: sparse: got restricted __le32 [usertype] drivers/scsi/qedi/qedi_fw.c:427:29: sparse: sparse: restricted __le32 degrades to integer drivers/scsi/qedi/qedi_fw.c:434:26: sparse: sparse: cast from restricted __le32 drivers/scsi/qedi/qedi_fw.c:435:26: sparse: sparse: cast from restricted __le32 drivers/scsi/qedi/qedi_fw.c:436:23: sparse: sparse: cast from restricted __le32 drivers/scsi/qedi/qedi_fw.c:437:20: sparse: sparse: cast from restricted __le32 drivers/scsi/qedi/qedi_fw.c:453:28: sparse: sparse: restricted __le16 degrades to integer drivers/scsi/qedi/qedi_fw.c:497:32: sparse: sparse: restricted __le32 degrades to integer drivers/scsi/qedi/qedi_fw.c:513:18: sparse: sparse: cast from restricted __le32 drivers/scsi/qedi/qedi_fw.c:513:16: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned int @@ got restricted __be32 [usertype] @@ drivers/scsi/qedi/qedi_fw.c:513:16: sparse: expected unsigned int drivers/scsi/qedi/qedi_fw.c:513:16: sparse: got restricted __be32 [usertype] drivers/scsi/qedi/qedi_fw.c:514:18: sparse: sparse: cast from restricted __le32 drivers/scsi/qedi/qedi_fw.c:514:16: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned int @@ got restricted __be32 [usertype] @@ drivers/scsi/qedi/qedi_fw.c:514:16: sparse: expected unsigned int drivers/scsi/qedi/qedi_fw.c:514:16: sparse: got restricted __be32 [usertype] drivers/scsi/qedi/qedi_fw.c:516:31: sparse: sparse: cast from restricted __le32 drivers/scsi/qedi/qedi_fw.c:517:31: sparse: sparse: cast from restricted __le32 drivers/scsi/qedi/qedi_fw.c:518:28: sparse: sparse: cast from restricted __le32 drivers/scsi/qedi/qedi_fw.c:523:28: sparse: sparse: cast from restricted __le16 drivers/scsi/qedi/qedi_fw.c:524:28: sparse: sparse: cast from restricted __le16 drivers/scsi/qedi/qedi_fw.c:525:28: sparse: sparse: cast from restricted __le16 drivers/scsi/qedi/qedi_fw.c:548:29: sparse: sparse: restricted __le32 degrades to integer drivers/scsi/qedi/qedi_fw.c:563:9: sparse: sparse: restricted __le32 degrades to integer drivers/scsi/qedi/qedi_fw.c:563:9: sparse: sparse: restricted __le32 degrades to integer drivers/scsi/qedi/qedi_fw.c:563:9: sparse: sparse: restricted __le32 degrades to integer drivers/scsi/qedi/qedi_fw.c:565:26: sparse: sparse: cast from restricted __le32 drivers/scsi/qedi/qedi_fw.c:566:26: sparse: sparse: cast from restricted __le32 drivers/scsi/qedi/qedi_fw.c:567:23: sparse: sparse: cast from restricted __le32 drivers/scsi/qedi/qedi_fw.c:590:20: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned int [usertype] iscsi_cid @@ got restricted __le16 [usertype] conn_id @@ drivers/scsi/qedi/qedi_fw.c:590:20: sparse: expected unsigned int [usertype] iscsi_cid drivers/scsi/qedi/qedi_fw.c:590:20: sparse: got restricted __le16 [usertype] conn_id drivers/scsi/qedi/qedi_fw.c:630:26: sparse: sparse: cast from restricted __le32 drivers/scsi/qedi/qedi_fw.c:631:26: sparse: sparse: cast from restricted __le32 drivers/scsi/qedi/qedi_fw.c:632:20: sparse: sparse: restricted __le16 degrades to integer drivers/scsi/qedi/qedi_fw.c:636:31: sparse: sparse: cast from restricted __le32 drivers/scsi/qedi/qedi_fw.c:639:38: sparse: sparse: restricted __le32 degrades to integer drivers/scsi/qedi/qedi_fw.c:741:28: sparse: sparse: incorrect type in initializer (different base types) @@ expected unsigned int [usertype] proto_itt @@ got restricted __le16 [usertype] itid @@ drivers/scsi/qedi/qedi_fw.c:741:28: sparse: expected unsigned int [usertype] proto_itt drivers/scsi/qedi/qedi_fw.c:741:28: sparse: got restricted __le16 [usertype] itid drivers/scsi/qedi/qedi_fw.c:751:19: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned int [usertype] iscsi_cid @@ got restricted __le16 [usertype] conn_id @@ drivers/scsi/qedi/qedi_fw.c:751:19: sparse: expected unsigned int [usertype] iscsi_cid drivers/scsi/qedi/qedi_fw.c:751:19: sparse: got restricted __le16 [usertype] conn_id drivers/scsi/qedi/qedi_fw.c:802:9: sparse: sparse: cast to restricted itt_t drivers/scsi/qedi/qedi_fw.c:864:20: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned int [usertype] iscsi_cid @@ got restricted __le16 [usertype] conn_id @@ drivers/scsi/qedi/qedi_fw.c:864:20: sparse: expected unsigned int [usertype] iscsi_cid drivers/scsi/qedi/qedi_fw.c:864:20: sparse: got restricted __le16 [usertype] conn_id drivers/scsi/qedi/qedi_fw.c:895:50: sparse: sparse: cast from restricted itt_t drivers/scsi/qedi/qedi_fw.c:895:40: sparse: sparse: restricted __le16 degrades to integer drivers/scsi/qedi/qedi_fw.c:900:48: sparse: sparse: restricted __le32 degrades to integer drivers/scsi/qedi/qedi_fw.c:899:49: sparse: sparse: incorrect type in assignment (different base types) @@ expected restricted __le16 [usertype] itid @@ got unsigned int @@ drivers/scsi/qedi/qedi_fw.c:899:49: sparse: expected restricted __le16 [usertype] itid drivers/scsi/qedi/qedi_fw.c:899:49: sparse: got unsigned int drivers/scsi/qedi/qedi_fw.c:948:23: sparse: sparse: incorrect type in assignment (different base types) @@ expected restricted __le16 [assigned] [usertype] sq_prod @@ got unsigned short [usertype] fw_sq_prod_idx @@ drivers/scsi/qedi/qedi_fw.c:948:23: sparse: expected restricted __le16 [assigned] [usertype] sq_prod drivers/scsi/qedi/qedi_fw.c:948:23: sparse: got unsigned short [usertype] fw_sq_prod_idx drivers/scsi/qedi/qedi_fw.c:1021:40: sparse: sparse: incorrect type in assignment (different base types) @@ expected restricted __le32 [addressable] [assigned] [usertype] isid_tabc @@ got unsigned int @@ drivers/scsi/qedi/qedi_fw.c:1021:40: sparse: expected restricted __le32 [addressable] [assigned] [usertype] isid_tabc drivers/scsi/qedi/qedi_fw.c:1021:40: sparse: got unsigned int drivers/scsi/qedi/qedi_fw.c:1022:37: sparse: sparse: incorrect type in assignment (different base types) @@ expected restricted __le16 [addressable] [assigned] [usertype] isid_d @@ got unsigned short @@ drivers/scsi/qedi/qedi_fw.c:1022:37: sparse: expected restricted __le16 [addressable] [assigned] [usertype] isid_d drivers/scsi/qedi/qedi_fw.c:1022:37: sparse: got unsigned short drivers/scsi/qedi/qedi_fw.c:1024:35: sparse: sparse: incorrect type in assignment (different base types) @@ expected restricted __le16 [addressable] [assigned] [usertype] tsih @@ got restricted __be16 [usertype] tsih @@ drivers/scsi/qedi/qedi_fw.c:1024:35: sparse: expected restricted __le16 [addressable] [assigned] [usertype] tsih drivers/scsi/qedi/qedi_fw.c:1024:35: sparse: got restricted __be16 [usertype] tsih drivers/scsi/qedi/qedi_fw.c:1025:47: sparse: sparse: incorrect type in assignment (different base types) @@ expected restricted __le32 [addressable] [assigned] [usertype] hdr_second_dword @@ got int @@ drivers/scsi/qedi/qedi_fw.c:1025:47: sparse: expected restricted __le32 [addressable] [assigned] [usertype] hdr_second_dword drivers/scsi/qedi/qedi_fw.c:1025:47: sparse: got int drivers/scsi/qedi/qedi_fw.c:1028:36: sparse: sparse: cast to restricted itt_t drivers/scsi/qedi/qedi_fw.c:1028:34: sparse: sparse: incorrect type in assignment (different base types) @@ expected restricted __le32 [addressable] [assigned] [usertype] itt @@ got unsigned int [usertype] @@ drivers/scsi/qedi/qedi_fw.c:1028:34: sparse: expected restricted __le32 [addressable] [assigned] [usertype] itt drivers/scsi/qedi/qedi_fw.c:1028:34: sparse: got unsigned int [usertype] drivers/scsi/qedi/qedi_fw.c:1029:34: sparse: sparse: incorrect type in assignment (different base types) @@ expected restricted __le16 [addressable] [assigned] [usertype] cid @@ got unsigned int [usertype] iscsi_conn_id @@ drivers/scsi/qedi/qedi_fw.c:1029:34: sparse: expected restricted __le16 [addressable] [assigned] [usertype] cid drivers/scsi/qedi/qedi_fw.c:1029:34: sparse: got unsigned int [usertype] iscsi_conn_id drivers/scsi/qedi/qedi_fw.c:1030:37: sparse: sparse: incorrect type in assignment (different base types) @@ expected restricted __le32 [addressable] [assigned] [usertype] cmd_sn @@ got unsigned int [usertype] @@ drivers/scsi/qedi/qedi_fw.c:1030:37: sparse: expected restricted __le32 [addressable] [assigned] [usertype] cmd_sn drivers/scsi/qedi/qedi_fw.c:1030:37: sparse: got unsigned int [usertype] drivers/scsi/qedi/qedi_fw.c:1031:42: sparse: sparse: incorrect type in assignment (different base types) @@ expected restricted __le32 [addressable] [assigned] [usertype] exp_stat_sn @@ got unsigned int [usertype] @@ drivers/scsi/qedi/qedi_fw.c:1031:42: sparse: expected restricted __le32 [addressable] [assigned] [usertype] exp_stat_sn drivers/scsi/qedi/qedi_fw.c:1031:42: sparse: got unsigned int [usertype] drivers/scsi/qedi/qedi_fw.c:1037:45: sparse: sparse: incorrect type in assignment (different base types) @@ expected restricted __le32 [addressable] [assigned] [usertype] lo @@ got unsigned int [usertype] @@ drivers/scsi/qedi/qedi_fw.c:1037:45: sparse: expected restricted __le32 [addressable] [assigned] [usertype] lo drivers/scsi/qedi/qedi_fw.c:1037:45: sparse: got unsigned int [usertype] >> drivers/scsi/qedi/qedi_fw.c:1039:45: sparse: sparse: incorrect type in assignment (different base types) @@ expected restricted __le32 [addressable] [assigned] [usertype] hi @@ got unsigned int [usertype] @@ drivers/scsi/qedi/qedi_fw.c:1039:45: sparse: expected restricted __le32 [addressable] [assigned] [usertype] hi drivers/scsi/qedi/qedi_fw.c:1039:45: sparse: got unsigned int [usertype] drivers/scsi/qedi/qedi_fw.c:1046:45: sparse: sparse: incorrect type in assignment (different base types) @@ expected restricted __le32 [addressable] [assigned] [usertype] lo @@ got unsigned int [usertype] @@ drivers/scsi/qedi/qedi_fw.c:1046:45: sparse: expected restricted __le32 [addressable] [assigned] [usertype] lo drivers/scsi/qedi/qedi_fw.c:1046:45: sparse: got unsigned int [usertype] drivers/scsi/qedi/qedi_fw.c:1048:45: sparse: sparse: incorrect type in assignment (different base types) @@ expected restricted __le32 [addressable] [assigned] [usertype] hi @@ got unsigned int [usertype] @@ drivers/scsi/qedi/qedi_fw.c:1048:45: sparse: expected restricted __le32 [addressable] [assigned] [usertype] hi drivers/scsi/qedi/qedi_fw.c:1048:45: sparse: got unsigned int [usertype] drivers/scsi/qedi/qedi_fw.c:1050:46: sparse: sparse: too many warnings vim +1039 drivers/scsi/qedi/qedi_fw.c be086e7c53f1fa Mintz, Yuval 2017-03-11 978 ace7f46ba5fde7 Manish Rangankar 2016-12-01 979 int qedi_send_iscsi_login(struct qedi_conn *qedi_conn, ace7f46ba5fde7 Manish Rangankar 2016-12-01 980 struct iscsi_task *task) ace7f46ba5fde7 Manish Rangankar 2016-12-01 981 { be086e7c53f1fa Mintz, Yuval 2017-03-11 982 struct iscsi_login_req_hdr login_req_pdu_header; be086e7c53f1fa Mintz, Yuval 2017-03-11 983 struct scsi_sgl_task_params tx_sgl_task_params; be086e7c53f1fa Mintz, Yuval 2017-03-11 984 struct scsi_sgl_task_params rx_sgl_task_params; be086e7c53f1fa Mintz, Yuval 2017-03-11 985 struct iscsi_task_params task_params; 21dd79e82f00b2 Tomer Tayar 2017-12-27 986 struct e4_iscsi_task_context *fw_task_ctx; be086e7c53f1fa Mintz, Yuval 2017-03-11 987 struct qedi_ctx *qedi = qedi_conn->qedi; ace7f46ba5fde7 Manish Rangankar 2016-12-01 988 struct iscsi_login_req *login_hdr; be086e7c53f1fa Mintz, Yuval 2017-03-11 989 struct scsi_sge *resp_sge = NULL; ace7f46ba5fde7 Manish Rangankar 2016-12-01 990 struct qedi_cmd *qedi_cmd; be086e7c53f1fa Mintz, Yuval 2017-03-11 991 struct qedi_endpoint *ep; ace7f46ba5fde7 Manish Rangankar 2016-12-01 992 s16 tid = 0; be086e7c53f1fa Mintz, Yuval 2017-03-11 993 u16 sq_idx = 0; be086e7c53f1fa Mintz, Yuval 2017-03-11 994 int rval = 0; ace7f46ba5fde7 Manish Rangankar 2016-12-01 995 be086e7c53f1fa Mintz, Yuval 2017-03-11 996 resp_sge = (struct scsi_sge *)qedi_conn->gen_pdu.resp_bd_tbl; ace7f46ba5fde7 Manish Rangankar 2016-12-01 997 qedi_cmd = (struct qedi_cmd *)task->dd_data; be086e7c53f1fa Mintz, Yuval 2017-03-11 998 ep = qedi_conn->ep; ace7f46ba5fde7 Manish Rangankar 2016-12-01 999 login_hdr = (struct iscsi_login_req *)task->hdr; ace7f46ba5fde7 Manish Rangankar 2016-12-01 1000 ace7f46ba5fde7 Manish Rangankar 2016-12-01 1001 tid = qedi_get_task_idx(qedi); ace7f46ba5fde7 Manish Rangankar 2016-12-01 1002 if (tid == -1) ace7f46ba5fde7 Manish Rangankar 2016-12-01 1003 return -ENOMEM; ace7f46ba5fde7 Manish Rangankar 2016-12-01 1004 be086e7c53f1fa Mintz, Yuval 2017-03-11 1005 fw_task_ctx = 21dd79e82f00b2 Tomer Tayar 2017-12-27 1006 (struct e4_iscsi_task_context *)qedi_get_task_mem(&qedi->tasks, 21dd79e82f00b2 Tomer Tayar 2017-12-27 1007 tid); 21dd79e82f00b2 Tomer Tayar 2017-12-27 1008 memset(fw_task_ctx, 0, sizeof(struct e4_iscsi_task_context)); ace7f46ba5fde7 Manish Rangankar 2016-12-01 1009 ace7f46ba5fde7 Manish Rangankar 2016-12-01 1010 qedi_cmd->task_id = tid; ace7f46ba5fde7 Manish Rangankar 2016-12-01 1011 be086e7c53f1fa Mintz, Yuval 2017-03-11 1012 memset(&task_params, 0, sizeof(task_params)); be086e7c53f1fa Mintz, Yuval 2017-03-11 1013 memset(&login_req_pdu_header, 0, sizeof(login_req_pdu_header)); be086e7c53f1fa Mintz, Yuval 2017-03-11 1014 memset(&tx_sgl_task_params, 0, sizeof(tx_sgl_task_params)); be086e7c53f1fa Mintz, Yuval 2017-03-11 1015 memset(&rx_sgl_task_params, 0, sizeof(rx_sgl_task_params)); be086e7c53f1fa Mintz, Yuval 2017-03-11 1016 /* Update header info */ be086e7c53f1fa Mintz, Yuval 2017-03-11 1017 login_req_pdu_header.opcode = login_hdr->opcode; be086e7c53f1fa Mintz, Yuval 2017-03-11 1018 login_req_pdu_header.version_min = login_hdr->min_version; be086e7c53f1fa Mintz, Yuval 2017-03-11 1019 login_req_pdu_header.version_max = login_hdr->max_version; be086e7c53f1fa Mintz, Yuval 2017-03-11 1020 login_req_pdu_header.flags_attr = login_hdr->flags; be086e7c53f1fa Mintz, Yuval 2017-03-11 1021 login_req_pdu_header.isid_tabc = swab32p((u32 *)login_hdr->isid); be086e7c53f1fa Mintz, Yuval 2017-03-11 1022 login_req_pdu_header.isid_d = swab16p((u16 *)&login_hdr->isid[4]); be086e7c53f1fa Mintz, Yuval 2017-03-11 1023 be086e7c53f1fa Mintz, Yuval 2017-03-11 1024 login_req_pdu_header.tsih = login_hdr->tsih; be086e7c53f1fa Mintz, Yuval 2017-03-11 1025 login_req_pdu_header.hdr_second_dword = ntoh24(login_hdr->dlength); be086e7c53f1fa Mintz, Yuval 2017-03-11 1026 ace7f46ba5fde7 Manish Rangankar 2016-12-01 1027 qedi_update_itt_map(qedi, tid, task->itt, qedi_cmd); be086e7c53f1fa Mintz, Yuval 2017-03-11 1028 login_req_pdu_header.itt = qedi_set_itt(tid, get_itt(task->itt)); be086e7c53f1fa Mintz, Yuval 2017-03-11 1029 login_req_pdu_header.cid = qedi_conn->iscsi_conn_id; be086e7c53f1fa Mintz, Yuval 2017-03-11 1030 login_req_pdu_header.cmd_sn = be32_to_cpu(login_hdr->cmdsn); be086e7c53f1fa Mintz, Yuval 2017-03-11 1031 login_req_pdu_header.exp_stat_sn = be32_to_cpu(login_hdr->exp_statsn); be086e7c53f1fa Mintz, Yuval 2017-03-11 1032 login_req_pdu_header.exp_stat_sn = 0; be086e7c53f1fa Mintz, Yuval 2017-03-11 1033 be086e7c53f1fa Mintz, Yuval 2017-03-11 1034 /* Fill tx AHS and rx buffer */ be086e7c53f1fa Mintz, Yuval 2017-03-11 1035 tx_sgl_task_params.sgl = be086e7c53f1fa Mintz, Yuval 2017-03-11 1036 (struct scsi_sge *)qedi_conn->gen_pdu.req_bd_tbl; be086e7c53f1fa Mintz, Yuval 2017-03-11 1037 tx_sgl_task_params.sgl_phys_addr.lo = be086e7c53f1fa Mintz, Yuval 2017-03-11 1038 (u32)(qedi_conn->gen_pdu.req_dma_addr); be086e7c53f1fa Mintz, Yuval 2017-03-11 @1039 tx_sgl_task_params.sgl_phys_addr.hi = ace7f46ba5fde7 Manish Rangankar 2016-12-01 1040 (u32)((u64)qedi_conn->gen_pdu.req_dma_addr >> 32); be086e7c53f1fa Mintz, Yuval 2017-03-11 1041 tx_sgl_task_params.total_buffer_size = ntoh24(login_hdr->dlength); be086e7c53f1fa Mintz, Yuval 2017-03-11 1042 tx_sgl_task_params.num_sges = 1; be086e7c53f1fa Mintz, Yuval 2017-03-11 1043 be086e7c53f1fa Mintz, Yuval 2017-03-11 1044 rx_sgl_task_params.sgl = be086e7c53f1fa Mintz, Yuval 2017-03-11 1045 (struct scsi_sge *)qedi_conn->gen_pdu.resp_bd_tbl; be086e7c53f1fa Mintz, Yuval 2017-03-11 1046 rx_sgl_task_params.sgl_phys_addr.lo = be086e7c53f1fa Mintz, Yuval 2017-03-11 1047 (u32)(qedi_conn->gen_pdu.resp_dma_addr); be086e7c53f1fa Mintz, Yuval 2017-03-11 1048 rx_sgl_task_params.sgl_phys_addr.hi = be086e7c53f1fa Mintz, Yuval 2017-03-11 1049 (u32)((u64)qedi_conn->gen_pdu.resp_dma_addr >> 32); be086e7c53f1fa Mintz, Yuval 2017-03-11 1050 rx_sgl_task_params.total_buffer_size = resp_sge->sge_len; be086e7c53f1fa Mintz, Yuval 2017-03-11 1051 rx_sgl_task_params.num_sges = 1; be086e7c53f1fa Mintz, Yuval 2017-03-11 1052 be086e7c53f1fa Mintz, Yuval 2017-03-11 1053 /* Fill fw input params */ be086e7c53f1fa Mintz, Yuval 2017-03-11 1054 task_params.context = fw_task_ctx; be086e7c53f1fa Mintz, Yuval 2017-03-11 1055 task_params.conn_icid = (u16)qedi_conn->iscsi_conn_id; be086e7c53f1fa Mintz, Yuval 2017-03-11 1056 task_params.itid = tid; be086e7c53f1fa Mintz, Yuval 2017-03-11 1057 task_params.cq_rss_number = 0; be086e7c53f1fa Mintz, Yuval 2017-03-11 1058 task_params.tx_io_size = ntoh24(login_hdr->dlength); be086e7c53f1fa Mintz, Yuval 2017-03-11 1059 task_params.rx_io_size = resp_sge->sge_len; be086e7c53f1fa Mintz, Yuval 2017-03-11 1060 be086e7c53f1fa Mintz, Yuval 2017-03-11 1061 sq_idx = qedi_get_wqe_idx(qedi_conn); be086e7c53f1fa Mintz, Yuval 2017-03-11 1062 task_params.sqe = &ep->sq[sq_idx]; be086e7c53f1fa Mintz, Yuval 2017-03-11 1063 be086e7c53f1fa Mintz, Yuval 2017-03-11 1064 memset(task_params.sqe, 0, sizeof(struct iscsi_wqe)); be086e7c53f1fa Mintz, Yuval 2017-03-11 1065 rval = init_initiator_login_request_task(&task_params, be086e7c53f1fa Mintz, Yuval 2017-03-11 1066 &login_req_pdu_header, be086e7c53f1fa Mintz, Yuval 2017-03-11 1067 &tx_sgl_task_params, be086e7c53f1fa Mintz, Yuval 2017-03-11 1068 &rx_sgl_task_params); be086e7c53f1fa Mintz, Yuval 2017-03-11 1069 if (rval) be086e7c53f1fa Mintz, Yuval 2017-03-11 1070 return -1; ace7f46ba5fde7 Manish Rangankar 2016-12-01 1071 ace7f46ba5fde7 Manish Rangankar 2016-12-01 1072 spin_lock(&qedi_conn->list_lock); ace7f46ba5fde7 Manish Rangankar 2016-12-01 1073 list_add_tail(&qedi_cmd->io_cmd, &qedi_conn->active_cmd_list); ace7f46ba5fde7 Manish Rangankar 2016-12-01 1074 qedi_cmd->io_cmd_in_list = true; ace7f46ba5fde7 Manish Rangankar 2016-12-01 1075 qedi_conn->active_cmd_count++; ace7f46ba5fde7 Manish Rangankar 2016-12-01 1076 spin_unlock(&qedi_conn->list_lock); ace7f46ba5fde7 Manish Rangankar 2016-12-01 1077 ace7f46ba5fde7 Manish Rangankar 2016-12-01 1078 qedi_ring_doorbell(qedi_conn); ace7f46ba5fde7 Manish Rangankar 2016-12-01 1079 return 0; ace7f46ba5fde7 Manish Rangankar 2016-12-01 1080 } ace7f46ba5fde7 Manish Rangankar 2016-12-01 1081 :::::: The code at line 1039 was first introduced by commit :::::: be086e7c53f1fac51eed14523b28f2214b548dd2 qed*: Utilize Firmware 8.15.3.0 :::::: TO: Mintz, Yuval :::::: CC: David S. Miller --- 0-DAY CI Kernel Test Service, Intel Corporation https://lists.01.org/hyperkitty/list/kbuild-all@lists.01.org --IJpNTDwzlM2Ie8A6 Content-Type: application/gzip Content-Disposition: attachment; filename=".config.gz" Content-Transfer-Encoding: base64 H4sICH0HuWAAAy5jb25maWcAlFxLd9s4st73r9Bxb2YW3fGrddN3jhcgCUpokQRDgJLsDY/i KGmfdqwcW57bmV9/q8AXCgDlzCymo68Kr0KhXgD9808/z9jr8fB1d3y43z0+fp992T/tn3fH /afZ54fH/b9miZwVUs94IvSvwJw9PL3+/W73fD/77deLq1/Pf3m+v5it9s9P+8dZfHj6/PDl FVo/HJ5++vmnWBapWDRx3Kx5pYQsGs23+uYMWu8//rJ//PzLl/v72T8WcfzP2e+/QmdnVhOh GiDcfO+hxdjNze/nV+fnA2/GisVAGmCmTBdFPXYBUM92eXU99pAlyBqlycgKUJjVIpxbs11C 30zlzUJqOfZiEUSRiYJbJFkoXdWxlpUaUVF9aDayWo1IVIss0SLnjWZRxhslKw1UkO7Ps4XZ qsfZy/74+m2UtyiEbnixblgFExa50DdXl+O4eSmgH82VtpYrY5b16zo7I4M3imXaApdszZsV rwqeNYs7UY692JTsLmcjhbL/PKMw8s4eXmZPhyOupW+U8JTVmTbrscbv4aVUumA5vzn7x9Ph af/PgUFtmDUpdavWoow9AP8b62zES6nEtsk/1LzmYdRrsmE6XjZOi7iSSjU5z2V12zCtWbwc ibXimYgslazhXPX7Cbs/e3n9+PL95bj/Ou7nghe8ErFRDrWUG+tMdJSSF4kojPr4RGwmij94 rHFzg+R4aW8jIonMmSgopkQeYmqWglesipe3lJoypbkUIxn0o0gybut7P4lcifDkO4I3n7ar fgaT6054VC9SZXRu//RpdvjsCNltFMNJWPE1L7Tqd0U/fN0/v4Q2Rot41ciCw6ZYZ6mQzfIO z1luxD0oO4AljCETEQeUvW0lYFFOT9aaxWLZVFw1aA4qsihvjoP6VpznpYaujPEZJtPja5nV hWbVrT0llysw3b59LKF5L6m4rN/p3ctfsyNMZ7aDqb0cd8eX2e7+/vD6dHx4+uLIDho0LDZ9 gPpaRk8lMIKMORwkoOtpSrO+GomaqZXSTCsKgRZk7NbpyBC2AUzI4JRKJciPwQwlQqFhTuzt +AFBDNYCRCCUzFh3Oo0gq7ieqYC+gdAboI0TgR8N34JaWatQhMO0cSAUk2naaX2A5EF1wkO4 rlgcmBPsQpaNZ8CiFJyDR+GLOMqE7YGQlrJC1razGsEm4yy9cQhKu0fEjCDjCMU6OVU4Qyxp 8sjeMSpx6v8iUVxaMhKr9h8+YjTThpcwELF3mcROUzDjItU3F/9j46gJOdva9MvxuIlCr8AT p9zt48o1YSpegoiNIev1Sd3/uf/0+rh/nn3e746vz/sXA3drD1AH7VxUsi6tBZRswdtDz6sR BWcXL5yfjhtusRX8xzrM2aobwfKe5nezqYTmEYtXHsUsb0RTJqomSIlTiOnATWxEoi0PXOkJ 9hYtRaI8sErsYKYDUzhZd7YUYAMVt40PqgN22FG8HhK+FjH3YOCmdqmfGq9SD4xKH8uFigOD gSu0rISMVwOJaWt5GFOpEs6KtZJaq6aw41SIn+zfsLyKALhq+3fBNfkNso9XpQStRo8GQbAl hlaBWa2loxsQfsGeJhycT8y0vXkupVlfWjuO5p9qHUjehJWV1Yf5zXLoR8m6gn0ZQ84qcSJd ACIALglCQ14AtncOXTq/r8nvO6Wt6URSonullgYSClmC+xd3vEllZVRCVjkrYuLdT7A18iro 6t0mCv4R8PtuBEzUz/VEOfhHgaphbdSC6xzdLHYEPsLdQg9O20jPDciHEIgYSDttsqTGsxQk aatYxBQssyYD1ZCcOj9BjZ3spoXjvNzGS3uEUpK1iEXBMjufNPO1ARNj2oBaEtvIhKUsEJPU FQlHWLIWivfisgQBnUSsqoQt9BWy3ObKRxoi6wE14sFjo8Wak832Nwj3N5cQHSQVMFeUYEIk e5UrEJ0lhDziSWIfZCNkVNdmCML7HUYQ+mzWOYxv+9kyvji/7l1dV4oo98+fD89fd0/3+xn/ 9/4Jgi8G3i7G8Asi5TGmCo5lbGVoxMFn/uAwfYfrvB2jd53WWCqrI9c4Y5LOdBOZQsBwRFXG otCRhA4omwyzsQi0owL/3YWu9hyAhv4MY7KmghMn8ynqklUJRBpEc+s0hWTMxAZGUgwMurNC jG5KVmnB6JnXPDf+B6sqIhUxo1kquNBUZET1TRxnXAdJgWgxZDgnVey0xLwwzdgCbE1dlrKi VZAV+BCf0HokmQsNcgD32JjhbWUf8kdV24cY0t4GBtNwKhteYJ5gndTcClEhjhUSB4UQsAx0 yzIRVeDZ2lzGZ1huOGSH9pQ1BE/tgsflmBMCk5qx5/s/H477e4z2vLLdwFU+7o6o3u/UIX4X HXbPn8ZzA/SmhJU1Oro435IltzjbKkrA31eUEYKQZqmSlb2PEwOP+g35FjbGIxKHUtOObiKA YSmgflPlSZwIaudS0cnpuuBNjonEGAggX4SGq0gEs9RU2VatqEzAd3NNlpqXcHQgX5QFRjx2 NIjkPLbDCzMlBkoXgBqsI3bB/9ymYqVRBFohnkz2hodW+Q1EHFM9Nkij7m7m137nLm8S5DUo upab87/Zefs/IoO8btbXjiqhTcFYpHlPbCGlXcxXwaCGcl2vAtpiFlEvuGG7zN0xBtLFPJ9o nYJOKHRbXiDbCwi8auyjmB85zOhsaogcIHwAe4NGAxIBrgL7k2Xz68A2izXMIvcJ0E0GlIXT U6JKrzLU421tdlKsyIIe3mQKJ7nYog5z2spVfUATiDE/ipLOMiujvsriGgr/WA+2XBT1Fv9/ 1avce0flWg4w51MMWG/LQ9IsGb8+p/BqzZKkjZpvLn8j5zKuqwqSCxS/Fefc3Vw42s8127CK N0uctLNP0cIBNpegKBtRJB5jo7MIPS0rpGA+9Y8aDBE4dJ5RGpY6NMwy0VHTVtXPqKhPuIwh ZpaQNpkaxh0olYQ4obq5uBhcuSXJMndDHkAgpsUMJXFJCdBMpT2RE6gJr7F0dHF5bnUYZysy QO8s26qxdRY2H8CjbyCF5SmEIAIDNS9G8ts3Mr1xbmJ2lpB++bT/BvKDoHB2+IZysqLOuGJq 6eQk4BOa1I7RIfaJbNsc2josd8KMVvwWDArkOfRax0TT45pG0+KalVXFtTucaSxgihCRYBzm 9uvNr0WnejKxkAlIllJa+zKUrWBxWP5u9BLrc04QdXUZQfAl07Rxp2HIIdFkWvbGLTSPAuxR hVLpTbzDBzlNy6tKHmNkakVuMqkzroy5xtwSMyVLURbtTV0GET9kZuPNWwaTabCmBcecFJna aL9dImoyjUjtzCEo1DItmjXsbDJoYyzXv3zcvew/zf5q85Rvz4fPD4+kAI9MnZEnYfSptm6s /Ya690NhVIt5s60TJsVUmFiN96itXDF7bky5Qnsid4HO5GTSVpiOVBdBuG0RIHbXn/4YCoLJ 7v6aZL7jdENYO1CQMtELBHXswnbFlHR5eR30sw7Xb/Mf4Lp6/yN9/XZxGfDXFg84w+XN2cuf u4szh4o6XeEljRteuHSsq52aysC4vfshNiyiTU8as9MN1kcVXpcOlc5G5Jgh0a03Vgw8qYYl vnv5+PD07uvhExyGj/sz1xCYS5YMzJpdrYy6Cvzwc9VAlGPyY+eUI0nFSoAh+VATAz5WyJtq g7aekrCMGalFECTXzGPNU/NFJXSwHNqRGn1x7pPRoyc+DMZaak0TdJ8Gstk4i8oTk8eADSb1 QaRtorAEBN6S8SK+naDG0hUd9NTkH9yZYW3HdrQ2Glqnwty/tOsWiLYPOiATjKvbkhYtguQm ha3vbjSMlS53z8cHNJQz/f3b3i5JYZnENOkjIssZQsxQjByTBIg6c1awaTrnSm6nySJW00SW pCeoJpLSPJ7mqISKhT242IaWJFUaXGkuFixI0KwSIULO4iCsEqlCBLxkhoRj5QQUuShgoqqO Ak3wBheW1Wzfz0M91tDSBPeBbrMkDzVB2L2zWQSXB2FqFZagqoO6smLgXEMEngYHwBcz8/ch inWMB9IQJbgKbh+PHCLuWNAjA9haQD/Sg+n9G4ImmWgfzcjxAtM6RNBKyLZul0A4SR9fWcTV bWTbnx6OUttspB+a3sg4t4ZIci7YxpcmZGbj6abXbUwVF0RRWsOhSkjGMEqJaS647Mt5kNRr mUPgXOWWbTVxVtsYDprcFPbiwIXwfIpoQs0J2njVaUTO/97fvx53Hx/35o3gzJTAj5bwI1Gk ucbY2NKtLKX5Dv5qEgzc+6cUGEt7V+ZdXyquRKk92LnqhC6xR3sXpiZrVpLvvx6ev8/y3dPu y/5rMFXryreWMLC6WeCNBxZocueSGx992e85+iNUZhDcl9pImVYHu0YRRgbECrVA01U66bkL YKZMVXHUDeKOwVxWzG1e6DYOJfcoS0giTRlDN/PrSNjShuQjprVrEIGGtIjcMylLTP2m5pg+ guk0Pd9cn/8+FEdOJ2EhKsx4w26VHU8G2fL2eiwQB8YZB49Ki6FpBeKgrxVict8PxtK9oOkh 2xEiaG4xKQRzY+pmeOpx1400rMAAQwArq/FlEUdVC61iskl7xfx21++vL4PR9ImOwwnDqQbL +L9rMhG6T/HfnD3+53BGue5KKbOxw6hOfHE4PFepzJITE3XYVXsXODlPwn5z9p+Pr5+cOfZd 2QfStLJ+thPvf5kpWr+VewPaIw1NEUw5xRwIrLus6AUyuhIsZtqXCli9HAsMOVg3UVX2VV7J K7wCcR7ZLcD70cKTeWEliwySiWVp3hOkKjB2qXlbXrGD6xUaDPMg2Tbj05a6b1fYdyr43gTW W5EqF4I8gIHTEBW3X9yoVdTwLSQbfUXAeItif/y/w/NfD09ffDcB5nhlT6D9DfEes4SOYSD9 BX4tdxDaRNuX+/DDezSEmJYWsE2rnP7CuhktdxiUZQvpQPSxhoHMRWfKYmcEjIMh1M+EnY4Z QutvPHYsVCpN8op2FksHgJTcnUKJp5/u2YrfesDE0ByjGh3bD4nymPxwZL5NSvM+ijzmskCH XRDNE2X77iVmiqJDeRuiRXJ3DLRURHBGBXdPVt9ZmXXv/ynN9NRxMPuR20Bb8yqSigcoccaU EgmhlEXp/m6SZeyD+DjJRytWObskSuEhCwz7eF5vXQLeuBZ2ZjTwh7qIKtBoT8h5tzjn5elA CTGfknApcpU364sQaL3+UrcYp8mV4Mqd61oLCtVJeKWprD1glIqi+kaOjQHIsekR/+T3FOdE iHay9JwZ0Bwhd76GEgT9o9HAQCEY5RCAK7YJwQiB2ihdSevgY9fwz0WgUjKQIvLAuUfjOoxv YIiNlKGOlkRiI6wm8NvIvhYY8DVfMBXAi3UAxMdW9NnIQMpCg655IQPwLbf1ZYBFBn5fitBs kji8qjhZhGQcVXag1Yc4UfBTh57ab4HXDAUdjMgGBhTtSQ4j5Dc4CnmSodeEk0xGTCc5QGAn 6SC6k/TKmadD7rfg5uz+9ePD/Zm9NXnyG7mcAGM0p786X4Sfc6QhCpy9VDqE9pkouvImcS3L 3LNLc98wzact03zCNM1924RTyUXpLkjYZ65tOmnB5j6KXRCLbRAltI80c/J6GNEiESo2tQF9 W3KHGByLODeDEDfQI+HGJxwXTrGO8F7ChX0/OIBvdOi7vXYcvpg32SY4Q0Nb5iwO4eTtcKtz ZRboCXbKrcSWvvMymOM5WoyqfYutavxIkiYt0At+ewmTg7Td/gYTuy912YVM6a3fpFzemjsd CN/ykuRZwJGKjMR7AxTwWlElEsjX7Fbtp1WH5z3mH58fHo/756mnbGPPodynI6E4yQuTkZSy XEDO1k7iBIMb59GenS+tfLrzwaTPkMmQBAeyVJbiFPi2uyhMhktQ/E5G3aqJvrBN//FaoKfG 0QCb5OuHTcULJDVBww9C0imi+wiZEPsHLtNUo3oTdHN8nK61edMh8VVeGabQwNsiqFhPNIGY LhOaT0yD5axI2AQxdfscKMury6sJkrCf9xJKID0gdNCESEj6VQvd5WJSnGU5OVfFiqnVKzHV SHtr14FTasNhfRjJS56VYZPTcyyyGtIk2kHBvN+hPUPYnTFi7mYg5i4aMW+5CPo1mI6QMwX2 omJJ0GJA4gWat70lzVzvNUBOqj7iACd8bVNAlnW+4AXF6PxADPicwItkDKf7jVwLFkX7QT6B qYlCwOdBMVDESMyZMnNaea4UMBn9QaI9xFyLbCBJvgozI/7BXQm0mCdY3b1qoph5L0IFaL9S 6IBAZ7SmhUhbinFWppxlaU83dFhjkroM6sAUnm6SMA6zD+GdlHxSq0HtgzFPOUdaSPW3g5qb CGFr7rheZveHrx8fnvafZl8PePP4EooOttr1bzYJtfQEuX27TsY87p6/7I9TQ2lWLbBi0f2p gxMs5qtA8gVFkCsUhvlcp1dhcYXiPZ/xjaknKg7GRCPHMnuD/vYksKBvviQ7zZbZEWWQIRwT jQwnpkJtTKBtgV/4vSGLIn1zCkU6GSZaTNKN+wJMWBJ2A32fyfc/QbmcckYjHwz4BoNrg0I8 Fam6h1h+SHUh38nDqQDhgbxe6cr4a3K4v+6O93+esCP4J1DwbpemvAEmku8F6O6n4CGWrFYT udTII/OcF1Mb2fMURXSr+ZRURi4n85zichx2mOvEVo1MpxS64yrrk3Qnog8w8PXboj5h0FoG Hhen6ep0ewwG3pbbdCQ7spzen8Dtkc9SsSKc8Vo869Pakl3q06NkvFjYlzQhljflQWopQfob OtbWeMjnjQGuIp1K4gcWGm0F6PQNUYDDvT4MsSxvFQ2ZAjwr/abtcaNZn+O0l+h4OMumgpOe I37L9jjZc4DBDW0DLJpcc05wmCLtG1xVuFo1spz0Hh0Lec0cYKivsGg4/nmcU8WsvhtRNsq5 V1XGA2/tD6w6NBIYczTkr1g5FKcIaRPpaehoaJ5CHXY4PWeUdqo/8zxrslekFoFVD4P6azCk SQJ0drLPU4RTtOklAlHQ5wId1Xw97m7pWjk/vUsKxJzXVy0I6Q9uoMI/k9O+BAULPTs+755e vh2ej/jdyvFwf3icPR52n2Yfd4+7p3t8uvHy+g3p1t/LM921BSztXHYPhDqZIDDH09m0SQJb hvHONozLeekfkLrTrSq3h40PZbHH5EP0ggcRuU69niK/IWLekIm3MuUhuc/DExcqPngbvpGK CEctp+UDmjgoyHurTX6iTd62EUXCt1Srdt++PT7cGwM1+3P/+M1vm2pvq4s0dpW9KXlXEuv6 /t8fKOqneNlXMXNHYn30C3jrKXy8zS4CeFcFc/CxiuMRsADio6ZIM9E5vRugBQ63Sah3U7d3 O0HMY5yYdFt3LPISvzETfknSq94iSGvMsFeAizLwIATwLuVZhnESFtuEqnQvgmyq1plLCLMP +SqtxRGiX+NqySR3Jy1CiS1hcLN6ZzJu8twvrVhkUz12uZyY6jQgyD5Z9WVVsY0LQW5c00+d Whx0K7yvbGqHgDAuZXzef+Lwdqf73/MfO9/jOZ7TIzWc43noqLm4fY4dQnfSHLQ7x7RzemAp LdTN1KD9oSXefD51sOZTJ8si8FrYf/WA0NBATpCwsDFBWmYTBJx3+ynCBEM+NcmQEtlkPUFQ ld9joHLYUSbGmDQONjVkHebh4zoPnK351OGaB0yMPW7YxtgchfnCwzphpw7Q/zN2Jc1x48j6 ryh8mHjv4OlatRx8AEmwSIubCFQV5QtDY8vdipaXkNzTM+/XPyRAspCJZNkd0Srz+5Ig9jWR yY6Pl+PQmsj46+OPX2h+RrCy2439rhXRvhhsF02R+FlAYbMMjs9TPZ7rg5EHlgiPVtBZJg5w VBJIexnRljRwhoAjUKTp4VE6qECIRIXoMdeLVb9mGVHW6Aqox/hDuYfnc/Ali5OdEY/BKzGP CPYFPE5p/vOHwjfrg5PRyqa4Z8lkLsMgbj1PhWOmH725ANG2uYeTDfWIG8nwvqDTqoxPOjOu 2RjgIo7z5HWuvQwB9SC0YlZmE7megefe0SnYevHPAxETXK+bjeopIYOVtuzh45/I9sEYMB8m ect7CW/dwJO1qVJH72N/08cRo/6fVQu2SlCgkPfOt9Q2JweGAFilwNk34Jo9Z/QN5MMYzLGD AQK/hrgvIq0qZLzCPJDrmYCgZTQApMw1ssgOT6ZrNF/p/eL3YLT6tri9Vl0TEMdT6BI9mBkn MrI1INb2GjJLCEyBFDkAKZtaYCRqV5fXGw4zlYU2QLw9DE/hDTKL+hatLZDT96S/i4x6sh3q bcuw6w06j3xnFkqqqmustjaw0B0OQwVHMx/o4xTvkPaJEgFghsodjCbLO54S7c16veS5qI3L QMGfCpx5tZA7QXadsQB09LJKeIlMFkXcSnnL0zt1pDceRgp+z0V7Np/kLFPqmWjcqg880epi 08+EVseyQIbsA+5ckd3FM8GaKnSz9i3/+aR6L5bLxZYnzewnL8gZwkR2rbpa+AYGbV0lETxh /e7gV1aPKBHhpoP0ObizU/jbYebBU4oVWvh2p8AShmiaQmI4bxK8o2gewVqEv8buVl7GFKLx +sYmq1E0L82irfGnLgMQ9jEjUWUxC9pLFjwDk2x8tOqzWd3wBF4D+kxZR3mBVhE+C3mOeh2f RCPCSOwMITuzYEpaPjq7c2/CIMDF1A+VzxxfAi9EOQmqgC2lhJq43XBYXxXDP6x15Rzy378t 6UnScyOPCqqHGe3pN91o76wb2CnU3V+Pfz2aGdBvgxUDNIUapPs4uguC6DMdMWCq4hBFg/QI Nq1vBGJE7ckl87WWqLtYUKVMFFTKvK7lXcGgURqCcaRCUGpGUgs+DTs2sokKFc4BN7+SyZ6k bZncueO/qG4jnoiz+laG8B2XR3Gd0OtqAIPxC56JBRc2F3SWMdnX5OzbPM7e87WhFPsdV16M 6MncX3ABJ707f78HMuCsxJhLPxMyiTsronBMCGsmnGltnWL4Y4/jhlS+e/P989Pnb/3nh9cf b4Z7Bc8Pr69Pn4ezDdy844JklAGCPfUB1rE7NQkI29ltQjw9hpg7Jh7AAaBeDwY0bC/2Y+rQ 8OglEwNklGpEGSUkl26ivDQFQecngNsdPWTlDRhpYQ5z1po9xyceFdObzwNu9ZdYBmWjh5PN pxNhvbJxRCyqPGGZvFH0uv3E6DBDBNElAcCpf8gQ3yHpnXC3C6JQEKwT0O4UcCXKpmACDqIG INVndFGTVFfVBZzTwrDobcSLx1SV1cW6oe0KULzxNKJBrbPBcqpkjtH4vp4Xw7JmMipPmVxy OuPhBXv3Aa64aD00wdpPBnEciHA8Ggi2F9HxaI6BGRJyP7lJ7FWSpFJgkbkukFOCyMw3hDWs xmHjP2dI/2qhhydor+6EVzELl/hWih8Q3iTxGNgHRlPh2qxQD2atiToUD8SXd3zi0KGaht6R lfSNLx8CIwgH3gLCBBd13WCvPc6iFxcUJrilsb2oQm/00cYDiFl211gmXDxY1PQAzM37yldR yBSdXNnMoUpofbGGAw1Qc0LUXatb/NSrMiGIiQRByoxYCahi3+EYPPW1LMHgWu/OUpADjGZv 15mtTNFGZOu7bmpTawccWQ8Ga1Rt565/gCkrvAnU+a9nx8jrzAabZxBT3Jo9IrAwYRfS4OBK 3ffYYUrkT8GtmxHdSlEG5iEhBHs+OR4H+HZZLn48vv4IFinNrcbXeGAPoa0bs/iscnLWEwRE CN/yy5QvomxFYrNgMOv48c/HHxftw6enb5MOkqc9LdCqHp5MBwKWowpk+NxEs/WdcLTOiodz aND9c7W9+DpE9tPjv58+Pl58enn6N7aAd5v7k+LLBrXLqLmTOsNd471pgz14ckqTjsUzBjdF FGCy8YbJe1H6eXw28lMt8rso84DPIAGI/D0+AHZE4P3yZn2DoVzVJ/UqA1wk7usJzToQPgRx OHQBpIoAQr0BALEoYtBDglvzfusCTuibJUbSQoaf2bUB9F5UH8DdQ7XG+O1BQEk1cS59vzs2 svtqk2OoA98q+HuNm/eRNMxA1tUH2GpmuZh8LY6vrhYMBC47OJgPPE9z+KWpK8Molnw0yjMx d5w2fzbdtsNcI8Utn7HvxXKxICmTpQo/7cAyzkl60+vl5WI5V5J8NGYiFxO86ELhIcJhvo8E nzmqTnVQhQewjyfdPGhZqskvnsAH0ueHj4+kZWX5erkkeVvGzWo7AwYlPcJw29btHp5Ui8Nv T3Haq2g2TtcwfBqBsLhCUCUArgiqhTLU9pqkYceEMJRsgJdxJELUlmyA7l1tRwknCcS9Etg3 drbDFH2PdINTZ+7PUkGdQCYtQtoUJm0M1GtkYdq8W8kmAEx6QzWEgXLqsAwblxqHlOUJARR6 9BeC5jHYCbUiCX6nVCleE4MCQK0aigWb63B0H3hh8MBexr6CrM84F0K2skbPfz3++Pbtxx+z YzsoSlTan8pBxsWkLDTm0QkNZFScRxpVLA90vlj2Cp+E+QL0cxOBTqV8gkbIEipBBn8tuhet 5jCYhKDx1aOyDQtX9W0eJNsyUawalhA6WwcpsEwRxN/C62PeSpYJC+n09SD3LM7kkcWZwnOR 3V12HcuU7SHM7rhcLdaBfNQI5KtrQFOmciS6WIaFuI4DrNjLWLRB3TlkyOwzE00A+qBWhIVi qlkgZbCg7tyZHgktwVxEWoXjMZmenrrG2WY4Td5Ts5xpfU2GESFnXifY+mE3y2Tk02lkyfq/ 7W6RH5QUvCeenmeWSKDT2WJfGVA9C7RDPiJ4V+Uo7e1vvy5bCLs1tpBq7gOh3J/4pjs4X/KP 8O051tLa3AF/kaEsDE+yqBszNB5FW5lJhWKEYtnqyVFgX1d7TggcKZgkWkecYHFR7pKIEQMH Ls4FihOxfnQYOZO+VpxEwO6C5xPu9FHzIItiXwizVMqRMRckBP5iOqt20rK5MGzoc6+HRoen fGkTEXounOgjKmkEw8ki9oOYR6TwRsSp3Zi3mlkuRhvWhNS3OUeSij8cTi5DxFqN9c2MTAR4 0MoraBMFz072qH9F6t2bL09fX3+8PD73f/x4EwiW0t8xmmA8j5jgoMz8cNRonhdvVqF3jVy1 Z8iqdsbiGWqw+zmXs31ZlPOk0oHB61MB6FkK/K7PcXmkAiWwiWzmqbIpznBmUJhns2MZeL1G JQiK0EGniyViNZ8TVuBM1HVSzJOuXENvsKgMhqt9nTPMPLlJatPb3J+JuGdS+wYwrxrfStCA 7hq6AX/T0OfAF8MAY2W/AaTm0UWe4idOAl4muyV5SlY6ssmwTuiIgJaWWWXQYEcWenb+BKBK 0ZUgUBrc5UilAsDKn6UMAHhHCEE83wA0o++qLLHqQsNm5cPLRfr0+Axugr98+evreK/sf4zo /w5TDd/agglAt+nVzdVCkGDzEgPQiy/9fQgAoRj3oghTlPrrpgHo8xXJnababjYMxEqu1wyE S/QEswGsmPws87itsU84BIch4TnliIQRcWj4QYDZQMMqoPRqaX5p0QxoGIrSYUk4bE6WqXZd w1RQBzKhrNNjW21ZcE76misHpW+2VlnD2xb/pbo8BtJwB7PoDDI0/jgi+Cg0MVlDvDjs2trO vnzX2nC8YT3jgefkjppWmNbeVB8EXisVUR0xPRU2yGYN62O7/anIixr1NlJnGhwCVJM5N6ed PrPx7Nyf+0VLH0IH7LDpBy0/8mfCWa1B+8W+AQJYXPhRHIBhbYLxXsZtTEQVcuQ5IJwCzcRZ j1Dg15VVb8FiMIX9JWHZWh+BFetT1sa9KUmy+6QhiekbjRNjyj0PAOue1jn9xBwsMm4Vxqhf 0zi3ZiPAO4PzAG53VkiZ6n2EEXsERkFkGh4As8Im0R+vhJR7XEP6vD6QL7QkoY1wh3Uor+Gw znnCrtN0LqNBZqb8LadEOl+aVmKmNDlB2a7gDxMXr87zDSGeZVTWTAO0eb74+O3rj5dvz8+P L+Hemy0J0SYHpN5gY+iOU/rqSDI/1eYvGpkBBX97goTQxrB2RI7sTri/6oIAQC44N5+IwbEq G0U+3jFp2X0HYTBQ2EoOa9OblhSEhqzzgjZDAbu6NOUODEO2adHZvkrgMESWZ9igOZh8M315 nOXNDMxm9chJ+pa9i6IlLfURhhxfEw4uFChN2jG4ddopUmjSTWj8WA1DxevT71+PDy+PtmZa 2ymKmrBwvduRBJgcufQZlFakpBVXXcdhYQAjEeSOCReOjXh0JiKWorGR3X1Vk54uL7tL8rpq pGiXaxpv2MLRNa22I8qkZ6JoPApxbypwjLy0YzxskTmpvtJuP9Kqbnq6RDiP9hjXjYxpOgeU y8GRCsrC7jujI3EL3+ZtTmsdRLkPqqhZ3Ab10/ZXy5vNDMxFcOKCGO6rvMlyOg+Z4PAFQaY8 fbq/sl7YT5f3zrQU5+3t279MX/70DPTjuZYE9xIOMqdfHGEupRPHtAGvwpguYuPH+UyU3Lnl w6fHrx8fHX0alV5DKzb2S7FIJHLU5qNctEcqyO6RYJLjU+fCZBv3+6vVUjIQ0zAdLpE3v5/n x+R9kh/GpyFefv30/dvTV5yDZoqWNHVekZiMaO+wlE7DzGwNH/mNaGXbFYrT9N0pJq9/P/34 +MdP5xzqOKiiOd+qKND5IMYQ4q7o0QoBAOTXcACsAxaYVIgqQenEpzlUi8E9W0/cfex7FIHX 3IeHBL/9+PDy6eJfL0+ffvf3Oe7hYsvpNfvY1yuKmBlNnVHQd9jgEJikwLQ1kKxVlkd+vJPL q5WnJ5RfrxY3K5puuF9rLap506lWNDk6fxqAXqvc1NwQt84hRsPd6wWlh9VB2/W664k76imI EpK2Q3u+E0dOj6Zg9yXV2h+5OCv9o/ARts6w+9jtzdlSax++P30Cf6aungX100v69qpjPtSo vmNwkL+85uVNV7kKmbZT4zxragEzsbMxt67qnz4OS+2LmvptE3uY/ApwwOm3jr21xh9Yn0Tw 4Bt8Oh4w+aXLxu8cRsSMDsjTgKlKVSIKPEtpXdhp3pbWVXC0z4vpLlb69PLlbxjZwJiZb30q Pdo2h04AR8huUSQmIN8Nqz3KGj/ixf701t6q+pGUs7Tv0zqQGz02+iVFkzG+dRSV3WHxPbiO BWRdtvPcHGp1Xdoc7cRMGjCtVBS1ChjuBbNYL2tfEbMp+7tasQ5D7GvCnSK4l63P+HdfptAH VLKvqzrGla6VO2RjyT33Ir65CkC0cTdgqshLJkC8gThhZQgelwFUlqiLGz7e3oUBmiqeYEUI yvRlxLwX+1r74wfWTOoas+4++PpG0BuqzFRjW8dTVNqGSu0sZLSiPNXBmR7Bad789RruwIvB CyL4FqzbvkCKG8se3cu1QOflbFl32r8pA9PtwoxhVV/4m1F3Vm02yn2fcjlslkL9Q2VaZjkL BEdNAwxTh9NWwEm5wUvpNFTXVSVjjRx+trBvRTyT7CpFnkAxBznxtGCpb3lC5W3KM/uoC4hS J+ihd3u2X0Z969HL+PeHl1esAW1kRXtlvZMrHEQUl5dm6chRvk9zQtXpORQC3dwsrmdY2P9V 99jjCAg4BQ6zwjWdtUZ3HU6kbjuMQ7VvVMFFxzQHcM94jnKWZ6zXaetg/O1yNgCzIrObl0LL 5Mx3rMdXcPiKZZzujSynyDDO4cdis6W5N/80iyLrueBCGFEN9jyf3alC8fDfoHyj4tb06bR0 sdv0VKPTIPrUt759K8y3aYJfVypNkPNQTNsSrxtaxEojrRpbgsjh9FDWOgetFtOfuasl0/RL lL+1dflb+vzwamb5fzx9Z9T9oeqmOQ7yvUxk7AYlhJsOoWdg8769bgQu3mpaT4Gsauq9emQi M2G5B3e+hme3cEfBYkaQiO1kXUrdkvoE40Akqtv+mCc665dn2dVZdnOWvT7/3cuz9HoV5ly+ ZDBObsNgtEvRDSMEWz5IyWcq0TJRtAsF3MxCRYjudU7qc+vvqlqgJoCIlDMLcZqSz9dYtxXz 8P073KYZwIvP316c1MNHMyLRal3DSNiNF5Ro48ruVRm0JQcGXmh8zqS/1e8W/7le2P84kUJW 71gCStsW9rsVR9cp/0mYHgS5N5LMdrlP72SZV/kM15ilEThhIH1MvF0t4oTkTSW1Jcigqrbb BcHQeYkD8Kr/hPXCLJHvzTqHlI7biTy0pusgkYPtoRbfDfpZrbBVRz0+f34LOx0P1s2NCWr+ ChR8poy3W9L4HNaDWlbesRSdTBkmEVqkBfJghOD+2ObO4zLyTYNlgqZbxlmzWt+utqRLsbvb ZnghBaCUXm1J+1RF0EKbLIDM/xQzz72utSicgtFmcXNJWNkKNfiFX66ugyF25aZm7pzi6fXP t/XXtzGU19z5ts2MOt75RgSd3wuzkirfLTchqt9tThXk52XvdGzM8hp/FBCi2mp70koCw4JD Sbpi5SWCIzafVKJU+2rHk0E9GIlVBwPzLuxzxbEfojrsyPz9m5k5PTw/Pz7b9F58dl3taU+U yYHEfKQgVcojwgbvk4lmOJNIwxdaMFxtuqbVDA4lfIaadj+owDDxZZhYpJKLoC4lJ16K9iAL jlFFDIuz9arruPfOsnDeF9YoR5nVwVXXVUwf4pLeVUIx+M6s1PuZMFOzBMjTmGEO6eVygZXd TknoONT0TmkR08msqwDikFds1dBdd1MlackF+P7D5up6wRBmDJdVbtaV8dxrm8UZcrWNZmqP ++IMmSo2lqaNdlzKYKG+XWwYBp/onXLVv/bi5TXtH1y+4bP/U2x0uV71Jj+5dkMO5bwa4u/R THB4ic9rK+Sc6NRcTI8vuI+4gbzYlWMPVD69fsRdjArt8k2vwx+ksDgxZEf/VOlydVtX+PCe Id06hnGle042sRuTi5+LZvnufNz6KNLMCAGbVX53bWqzGcN+N6NWeHI3hcpXeYPC2U8mSnx/ eEag56v5IOSaxjSectGalPtgELWRLxqTYRf/cL+rCzPhu/jy+OXby3/5GZcVw1G4A7sk04pz +sTPAw7ylM4iB9Aq/G6sb16z1FZ0hTpKqSMYM1Vw0DKz9mQkzdjcH+pinJrPBnwrJbeitfuW ZjonE1w0gLvD95SgoMppfulifh+FQH8sep2Z2pzVZrgkMzgrEMlosJawWlAOrEUFSycgwDss 9zWysQJwdt/IFuseRmVs5gWXvnG5RHtp9FdHdQpn/hrvjBtQFIV5ybe3VoNpeqHBpzkCzTy5 uOep2zp6j4DkvhJlHuMvDb2Bj6EN7tpqqqNn84I004cEn6A6AvTNEQYaoYXwlgSNmcKgCzcD 0Ivu+vrq5jIkzOR7E6IV7L75N++KW2x+YAD6am9yM/LNT1Kmd5djnA5o7vfgcYIWrOOLcNKv FIx6eYPnQh/Q3BWeQDnQrsT74kPd4kaE+Q/KzOi53SMazOaXpOpfCyuLf0HuerNiGjeSeffm +f++vX15fnyDaDs84FMyi5u6A1uw1sY7tq475DFY0+FRuMXkbo+8u6a8s4zMv5u0kTdCwtN8 wU9VxH9lBFV3HYKo4D1wiOnykuOCpaetcGC2JU4OCamHIzyc96hT6jF9JMrhAnQJ4CgOmU4e TBCxDaPlUt0qdNd2RNkcAhTsSyN7qYi0Xci0x1sdShmqIwFK1q1TuRyQ1zUQdL79BHIyCHh2 xKaVAEtFZGZeiqDkdo8VjAmAjHs7xLpvYEFQK1ZmhNrzLK6mPsPEZGDCCI34fGguzqe5jZ/Z 02w2PPpTslJmOgG+y9bFYbHyr+Mm29W265PGN5nsgfiE1ifQcWyyL8t7PN40mai03+fqPC1J JbCQWU365tpjdbNeqY1vR8QufnvlG1418/6iVnu4HGvq32AOYhy5mz4vvKWEPZWMa7P2Qytl C8PcAd99bhJ1c71YCf8KRq6K1c3Ct/7sEH/3ccxkbZjtliGibIkMx4y4/eKNf3E9K+PL9dZb OyVqeXmN1HnAp6SvWA/zhvz/OXvXJrdxZG3wr9Sn98zEvr3DiyhRG9EfIJKS6OKtSEpi+Quj xq7pdhy33WtXn+nZX79IgBdkIiH37kRMu/Q8uBGXRAJIJMACLmnCyb7LyAmJtPQ2DrCVZ9+o WC3EsCIzGVZ36dH0y1KCIVDbd2bBQRE854/ZM7kAF0yagl5FZFKFLu0VhMZlaweGlrCCkQVS H+gTXIphG+/s4PswMc1vF3QYNjacp/0Y789NZn7fxGWZ73nIAJJ80vLdh53vkT6vMXrjbwWl lt1dyuXoStVY//rny/eHHO7y/vHb65e37w/ff3359vrReCfwM6x+Psrh/+l3+HOt1R6OSMyy /v9IjBMkWAAgBssMbRHf9aIxBl+WnE2fB0k5Xh/pb+x/RXU3UcjKJPt7czd0wagnnsVBVGIU RsgLuJMzxsG1ERW6cKABYkMyozrTde/fFMB6oz/p8nl71+ryQI7IqWUrctjt683rtB3yoqfi oGlFIevdLBNVlg/HpSOpwkyleHj7z++vD3+Tzfzf//vh7eX31//9kKQ/yW78d8NDy6womSrM udUYoxGYXgeXcCcGM/e2VEEXgU7wRJksIsMNhRf16YTUTYV2yh0Z2DKhL+7nnv2dVL1a1dqV LSdhFs7VfzmmE50TL/JDJ/gItBEBVZdBOtMUTFNts+SwniSQryNVdCvAF4U5awGOXwdVkDKB 6J67Iy1mMpwOoQ7EMBuWOVRD4CQGWbe1qQdmAQk696VQzlPyf2pEkITOTUdrTobeD6ZeO6N2 1QtsA6wxkTD5iDzZoUQnAKxr1HWvyReV4fN4DgFrazAGlEvmsex+joyj2TmIFvfaYNbOYvKZ ILrHn62Y4H5D3xyHC3D40Z6p2Hta7P0Pi73/cbH3d4u9v1Ps/V8q9n5Dig0AnSx1F8j1cHHA s7uKxWEGLa+WvFc7BYWxWWqml59WZLTs5fVS0u6uNnO7Z6v7wWWqloCZTDowNwWlaqOmgiq7 IcefC2GaEK6gyItDPTAM1ZUWgqmBpg9ZNIDvV54cTugk1Yx1jw+4VPOwpJUB7wj0zROtz8ux Oyd0iGoQz/0zIVXdBBwvs6SKZZ0tLFET8Ltwh5+TdofAt6gWuLdujyzUoaNdDlB6kWwtInk8 ahKNUnOkc0f53B5syHyyKT+Y61H105TS+JduJKQkLdAkAKyJJC2H0N/7tPmO9EKyiTINlzfW nFzlyMHHDAp0U1WXr8/oBNE9l1GYxFLIBE4GrHCn7VU4mVBun3xX2Enc9OLUGVtFJBSMERVi u3GFKO1vaug4kchiGExxbEyu4CepM8kGkgOTVsxTIdB+RC/1b4kFaO4zQFY8QiJkKn/KUvzr SHtFEu6jP6mAhErY7zYErrompI10S3f+nrYpV7im5Ob3pow9c6NBaylHXBkKpG5ktAp0zoou r7nRMeterhtG4iz8KBhWI/sJn8cDxau8eif0QoBSulktWPclMIb6DdcO1bzT89imgn6wRM/N 2N1sOCuZsKK4CEsxJaueZVpHai/sRJBbc0JdhiqxkRyAsz+orG3NEzSgpBBG40BtcKzOKBPj kt2/P739+vDl65efuuPx4cvL26f/eV0djhoLBEhCIDc4ClLPPWVjoXw9FLmcVD0rCjMvKDgv B4Ik2VUQiNxXV9hT3ZqPBqmMqCmdAiWS+NtgILDSebmv6fLC3G5R0PG4rJ5kDX2gVffhj+9v X397kGKRq7YmlWsnvDyFRJ86ZJGv8x5IzodSR9R5S4QvgApm3GyAps5z+slyhraRsS7S0S4d MFRszPiVI+BEHawnad+4EqCiAOwT5R3tqeAYwW4YC+kocr0R5FLQBr7m9GOveS+nssUPe/NX 61mNS2R4pRHTK6VGlPXFmBwtvDdVE431suVssIm35g08hcrVy3ZjgV2EjEAXMGTBLQWfG3xs qlA5ibcEknpVuKWxAbSKCeAQVBwasiDuj4rI+zjwaWgF0tzeKX8LNDfLLEyhVdYnDApTizmz arSLdxs/IqgcPXikaVTqnPY3SEEQeIFVPSAf6oJ2GXh8AC2VNGpeUlBIl/iBR1sW7SZpRB1K 3Wrs12YaVtvYSiCnwewbtgptc/BsT1A0whRyy6tDvZrNNHn909cvn/9DRxkZWqp/e1jp1a3J 1LluH/oh0BK0vqkCokBretLRjy6mfT/5hkfXUf/18vnzP18+/PfDPx4+v/7y8oExpdETFfXh Aqi1ImWOH02sTJXPoTTrkYMnCcNFJ3PAlqnaNPIsxLcRO9AGGTGn3HFkOR04o9KPSXHpsKNv cn6rf1sP5Gh02v60th4mWl/QbLNT3kmVnz/jTktlcNrnLLdiaUkzUTGPpoI7h9HGMlKgVOKU tSP8QNuuJJx6Asz2BArp52A6lSPbv1R5wJKjr4c7wylSDCV3AR+neWOaw0lULXsR0lWi6c41 Bvtzrm4HXeUyvK5oaUjLzMjYlU8IVVYPduDMNOlJlYU5TgzfipYIvPJVo6udsIWtriF3DVrC pSXZ8pTA+6zFbcN0ShMdzZdoENH1DuLsZPJakPZGdkCAXEhkWJTjplS3LxF0LAR6nUtCYKve c9Bsxd7Wda/8iXb56S8GA2M6KYvhbrzMrqUdYYqITjahS5FHqabmUt2hI58KVrC02O/h/tuK TOf35PRbLqhzYosG2FEuL8yhCFiDF9YAQdcxZu350SrLjEElaXzddAhAQpmo3ts3tMZDY4U/ Xjokg/RvfCg4YWbmczBzI3DCmI3DiUHm3BOGnv+aseVMSM1S8HLsgx/uNw9/O3769nqT//+7 fQR3zNsMX/iekbFGy6UFltURMDCyrlvRukNPe9wt1Bxbu5TFVg1lTt7WIvY0so/jvg0mGetP KMzpgg4+FojOBtnTRar5760nq8xORB+m7TPTxmBG1GbZeGhrkeL34nCAFu7Wt3JdXTlDiCqt nRmIpM+vyjiNPnq5hgF/DgdRCGwwLhL8ZCEAvWlLmjfqke0i7CiGfqM45HE6+iDdQbQZer75 hK7RiKQzhREo7XXV1cTj6ITZtqCSw6+SqefDJAJHqX0r/0Dt2h8sB8Ztjl/l1r/Bnwu9QjUx rc2gt+FQ5UhmvKr+29Zdhx42uXJ2bagoVWE9PH81H1ZV7/Bh0/1zjpOA20xwlftsDA7R4ufS 9e9RLjV8G/QiG0QPe00YegR9xupy7/35pws3pf6cci4nCS68XAaZ615C4FUEJRO0r1ZOHj4o iAUIQOjkGADZz01TCoCyygaogJlh5ZLzcGlNyTBzCoZO529vd9j4Hrm5RwZOsr2baXsv0/Ze pq2daZUncIGXBdVtANldczebp/1uJ3skDqHQwDQgM1GuMRauTa4j8suLWL5A5upS/+aykIvK TPa+jEdV0tbRKgrRwwEy3KVfj1UQr/P0TO5Mcjtnjk+QotQ8YtO+3umgUCiySVLI2VTMFLIc FsxXSt++ffrnH2+vH2ffTuLbh18/vb1+ePvjG/csUmReLI2UpZXlCAjwUjnM4gi4f8gRXSsO PAFPEhEP0mknlCVWdwxsghipTug5bzvljqsC30pF0mbZIxNXVH3+NJ6kks2kUfY7tHm34Nc4 zrbelqMWn6OP3XvuDVY71H6z2/2FIMS1uDMY9m7OBYt3++gvBPkrKcXbEN+pxlWETu0samx6 rtK7JJGLoCLnogLXSX20oF7PgRXtPgx9G4dH+JBkIgRfjpnsBdMZZ/Ja2NzQdjvPY0o/EXxD zmSZ0jcigH1KRMx0X3CEDY5y2SboZG1BB9+Hprkwx/IlQiH4Yk3791LZSXYh19YkAN+laCBj 42/1RfoXRdeycIC3WJEmZX/BNZOafDuGxKGsOrMMk8g89l3R2PBt2D8359rSAnWqIhVNnyGL dQUoLxlHtMozY50yk8l6P/QHPmQhErUjZB6igiOsrnOE7zOzqCLJkNmE/j3WJbhVy09yDWtO TNpytu8cpS7Fe1c1mPum8kfsw/NPpnLdgEKINv2nc+YyQWsXGXkcTqaHnRnB75RD5uTccoHG a8CXUi4z5URgag9PeGPTDGx68Jc/xkwulMgaeIaNpoRAtvdsM13osjVSfQukOBU+/pXhn8jS me80evmLrp+Zj5HIH9obOzxVmBVoc3vi4DPv8QagnXeB59AeoSeCVIP59CfqlKojhvQ3vX6j jDnJT6lfIA/9hxNqDfUTCiMoxphRPXd9VuILhjIP8svKEDB4WjtrwdU/rPkJiXqtQui1ItRw cMXcDC/YgPZFdGFmA7+U4nm+STlUNoRBDahXjsWQpXJ2wtWHMrzml5KntFGK0biTlUrvc9jo nxg4ZLANh+H6NHBsE7MS16ON4qeRJlA/CmYZuenf+orgnKh5VWeJ3nRZMtKXxYwosw0sW4d5 lxh5YplthpPdMzf7hDbJYObBZAC//mgDfI8eW9a/tRnL4jTxTF+YT/FuyFqSlGwZyaV1YUq8 NAt8zzw8nwCpChTrmolEUj/H8pZbELJO01glGiscYLLTS/VVyhByaDWdkY7xBteC7xmCSaYS BVvkG19NU0PeJnQ7cK4JfAsiLQLTSONSpXgHcEbINxkJwisk5pnvIQuwKFW/LfGoUfkPg4UW pvYlWwvuHp/P4vbIl+s9ntT077Fquum0roRDtczVY46ilcqRsZg99lLaIKPJY3+ikJmAXNzB Iz7mzrnZC8GryxF5ZgakeSI6IYBK0BH8lIsKmWFAwLQRIrAOZ4CB70wYaDQFzormmWkRu+J2 2TQuFytwqIf8MS7kU81rf8fLu7zvLlbvPZbXd37MKwunuj6ZVXq68iJq8cC6sud8iM5pMOJZ Q1nEHzOCNd4GK4Tn3A8Hn8atOlIjZ9OfItByKXHECO5xEgnxr/GcFKeMYGgaWUOZjWd+/EXc spyl8jiI6JpopvAzxhnq2JnvWT+NQuanA/pBh7uEzLLmAwqPNWj100rA1qk1pCYyAtKsJGCF 26DibzyauECJSB79NkXksfS9R/NT+clQ7VF09dFo/Hfm3e7Hus0d+pPtxeq63cCiFHXR8or7 YgnHCGA0aF3u0AwT0oQa5NULfuItiWYQ/jbGRegezZ4LvyyzQcBA2cbWeo/PAf5lvbDVZh15 T2hCbP1wrjVZZaJCtz2KQQ7rygJw0yuQeJEDiHoLnIMRH/YSj+zo0QjXKAuCHZuTYGLSMkZQ RrlA72y0HbD3L4Cxe3odks4JOi+p5glkLASolNgcRp/1M0trVeDE5E2dUwK+mY5GRXCYTJqD VRpIr9WltBAZ3wbhjY0+y7Ctg2aOFjCb9iCiu9ktPGFUcBkMaL2lKCiH7+UqCG19aUg3oKzN 3zhcrlYp3siVcGsugjBuNVkHemiV0wIejRMZIs3M7vzYxfEmwL/Ng0D9WyaI4ryXkQb3AJ53 dY15p0qC+J25xz0j2vaE+uWU7BBsJG3EkEJhJ6XnHSGN3jhT27u1HLtwBVRVNl6Q2Tyf8rP5 FB/88r0T0g1FUfGFqkSPi2QDXRzGAa+Hyj+zFi0tusCcJq6DWQz4Nb+XAFdn8GkXTratqxp5 Jzmit2abUTTNtNtg4+KgjuowQUSsmZ35teoOwF/S4uNwj97j05dLBnyaTf0xTQB1iFBlwSOx PtXpNYkr++qap+YGnlq+pmjKLJrEXfz6EeV2HpGiJNOpeV2jEclj1k+PyJgaqZD66xm9owMP bxypYcmcTFZ1YFjCktO9moV6KkSIjlaeCrxvpn/TLakJRdJowuydp0HKc5ymaUUmf4yFuTsJ AM0uMzesIIB9J4tszgBS145KuIDLBfOu6VMidkhVngB8yjCD+P1d/T4EWmK0patvIOPvdutt +OE/ncasXOyHe9NOAX735udNwIj8Tc6gMknobzm25J3Z2DdfWQJUXShpp4vTRnljf7t3lLfK 8D3YM9YxW3E98DHl8tMsFP1tBLW89nZqLYHyMYNn2RNP1IVUywqB3DKgy3HwpLTpll0BSQpe LSqMko66BLQ9OcAr3tDtKg7D2ZllzdHJRZfsA48eTC5BzfrPuz26Kpp3/p7va3A4ZwQsk71v 700pODFf38qaHO+iqCBmVEiYQTaOKa+rE7C8MnfDuwrelckwIKNQW7IliV6pAkb4voRNGLzc 0RjzwvTE2Pv26Q1wuDcF7w2h1DRlXQbQsJzr8CSu4bx5ij1zA1DDclLx48GC7adNZ7yzkyae ijWoJVR/Rls6mrKPkTQuGwMvcybYvIkxQ6V55DaB2HPvAsYWmJemu7oJU/5s8fOGmrnCHnZl FmJuM4c22pkme2epwjyXmakra8O59Xci4D40UlsufMLPVd2gyz3QPYYC7zWtmLOEfXa+mB9E f5tBzWD57PqZzD0GgXcWenhlGVYu52fo/BZhh9SKMTKjVJQ5Znokn4zCogtE8sfYntGpxQKR TWrAr1IvT5D1uZHwLX+PZlf9e7xFSBotaOjpl0gxrl5lUk/tsP4ljVB5ZYezQ4nqmS+Rbacw fQZ97XnyRwaNWSCfxRMhBtrSE1EUss+4ztTomYJx1BCYXgeOqXmpPc2OyOvMo7lGkNICPVpW i7S9VBWexGdMrttaqfW3+NqzEkh5Y+4LnZ/xEYcCTP8ON2TcWkj1rm/zE1zfQcQxH7IUQ91x uTFd5vmD5JyvUoAdAIqrhOx4GgpiW5vCPRyETOf+BNWLkgNG57NzgiZltPHhrhxB9WtYBFQu cygYb+LYt9EdE3RMnk8VvEFGceg8tPKTPIFXkVHY6ZgQgyB5rA/Lk6agORVDTwIpmT/cxDMJ CH5ket/z/YS0jN5e5UG5SueJOB4C+T9Cqm0RG9PGaQ649xkGFvgYrtQJoSCpgxvpZBONPRh/ 0dYBkiVEH3shwZ7sLGdTLgIqDZ2A83vqeLyAtRZG+sz3zAvNsIUrO0qekATTBrY0Ahvsk9j3 mbCbmAG3Ow7cY3A29ULgJBJPcpwH7QndLpka+bGL9/vINNbQBqfk3FyByHV2fSTz6RwPPVqp QKlUbHKCETsihWnX4zTTvD8ItMepULhWBX7vGPwC+3+UoMYUCiSvEQDEnaQpAu9mqrdnr8jr oMZgH03WM82prAe0SFZgnWDDMZ1P87Tx/L2NShV5s8htiT2Uf3x++/T759c/sVv7qaXG8jLY 7QfoLMT9gLb6HEAJWfOxW8rydT/xTK0uOav7hkU2oK1oFEIqP222XO9qks45OUluHBrzmgMg xbPSIow3p60UluDIEKJp8I/x0KXKVTYCpSog9fAMg8e8QDsJgJVNQ0KpjyezetPUoi8xgKL1 OP+6CAiyeEI0IHWNGBmxd+hTu+KcYG55Atccf4pQfroIpu5awV/GxqIcC9rslFrUA5EI89we kEdxQ+tGwJrsJLoLidr2ReybrnZXMMAgbImj9SKA8v9IO56LCZqIvxtcxH70d7Gw2SRNlN0P y4yZuXQyiSphCH3A7eaBKA85w6TlfmveWprxrt3vPI/FYxaX4moX0SqbmT3LnIpt4DE1U4FW EjOZgLJzsOEy6XZxyIRv5QKjI96CzCrpLocus3392UEwB89CldE2JJ1GVMEuIKU4ZMWjuZms wrWlHLoXUiFZIyVpEMcx6dxJgHaX5rK9F5eW9m9V5iEOQt8brREB5KMoypyp8Cep59xugpTz 3NV2UKlMRv5AOgxUVHOurdGRN2erHF2eta3yLYLxa7Hl+lVy3gccLp4S3yfF0EM5HDNzCNzQ Khp+rcbfJdr7kb/jwEfmu2frcghKwPw2CGxdYzrrQyPlJLvDBDi3nC5j6sfFATj/hXBJ1mqH 22gTVAaNHslPpjyRdrZgSh2N4vt/OiA89J2chVxsFrhQ+8fxfKMIrSkTZUoiufS4+N2k1KFP 6myQo6/BJr2KpYFp2SUkzgcrNz6nrlfLCP1v1+eJFaIf9nuu6NAQ+TE3p7mJlM2VWKW81VaV tcfHHF+eU1Wmq1zdv0V7tvPX1ubcsFTBWNWTw3GrrcwZc4FcFXK+tZXVVFMz6sNyc5cvEW2x 900/9TMCGwkdA1vZLszNdKy/oHZ5to8F/T12aAExgWi2mDC7JwJqeSCZcDn6qMdJ0UZRYNio 3XI5jfmeBYx5pyx+bcLKbCa4FkG2VPr3aC6nJoiOAcDoIADMqicAaT2pgFWdWKBdeQtqF5vp LRPB1bZKiB9Vt6QKt6YCMQF8xv4j/W1XhM9UmM9+nu/4PN/xFT732XjSQC8zkp/qYgeF9CE9 jbfbJpFH3NWbGXHXSEL0g16tkEhnpqaCyDlHvfEOb92mE79s5uIQ7H7vGkTGZXZ6gXdfZwl/ cJ0lJB16/ip8WKvSsYDz83iyocqGisbGzqQYWNgBQuQWQNRV0yakTq0W6F6drCHu1cwUyirY hNvFmwhXIbHbOaMYpGLX0KrHNGrLIs1ItzFCAevqOmseVrA5UJuU+PVuQDp8kUgiRxYBj089 7PWkbrLsTofLkaFJ15thNCLXtNDrKQDbAgTQ9GBODMZ4JpdMRN7WyDGDGZaYLufNLUBHOBMA h+458rM5E6QTABzQBAJXAkCAg76aeEbRjPZomVzQo9kzic5RZ5AUpsgPkqG/rSLf6NiSyGa/ jRAQ7jcAqA2iT//+DD8f/gF/QciH9PWff/zyC7zNXf/+9unrF2PHaE7ela0xayz7R38lAyOd G3oLcQLIeJZoei3R75L8VrEO4E5n2lwyXB7d/0AV0/6+FT52HAHbvUbfXm8HOz+Wdt0WOTOF 9bvZkfRvcJlU3pClCSHG6ooeMproxrx2OWOmMjBh5tgCQ9XM+q3805UWqj3DHW/wgiZ2bCaz tpLqy9TCKrnmkQsACsOUQDEwkq+TGgudJtpYyzHArEDYek8C6Eh1AtY3EcjqAnjcHVWFmC9g mi1rWe3LgSuVPdOoYkZwSRcUC9wVNgu9oLbU0LisvjMDg/8/6Dl3KGeSSwC8iw/jwbwJNgHk M2YUTxAzSlIsTAcDqHItU5ZSaoief8GA9Rq8hHATKgjnCggps4T+9AJi+DuBdmT5dwVWOHZo 5ulkgC8UIGX+M+AjBlY4kpIXkhB+xKbkRyRcEIw3fJIjwW2ot7TUqRCTyja8UADX9J7ms0cv PaAGto2/5bIxwdeQZoQ01wqbI2VBz1JU1QeQvC2ft1zMoLOGtg8GM1v5e+N5SJhIKLKgrU/D xHY0Dcm/QuSsAjGRi4nccYK9R4uHemrb70ICQGwechRvYpjizcwu5Bmu4BPjSO1SPVb1raIU HmUrRmyBdBPeJ2jLzDitkoHJdQ5rz9IGSS9rGxQWSgZhKR4TR2Qz6r7U5FdtFMceBXYWYBWj gH0pAsX+PkgyC+psKCXQLgiFDR1oxDjO7LQoFAc+TQvKdUEQVikngLazBkkjs8rgnIkl/KYv 4XC9s5ubRzIQehiGi43ITg670OZmUNvfzDMS9ZPMahojXwWQrKTgwIGJBcrS00whpG+HhDSt zFWiNgqpcmF9O6xV1Qt4dCz6WtNsX/4YkbVx2zFKO4B4qgAEN716VM9UY8w8zWZMbtjXuv6t g+NMEIOmJCPpHuF+YN6e0r9pXI3hmU+CaOewwHbAtwJ3Hf2bJqwxOqXKKXExaCbOqM3veP+c miouiO73KXYVCb99v73ZyD2xpszissq8I/vUV3ifYwKst1vVlmIrnrHJg0LlojgyCyejx54s DHgj4U6Q9SErPmYDj3YjFjboePGcFgn+hV1izgi5cw4o2QZR2LElADLAUMhgvgcra0P2v+65 QsUb0KZr6HnoFshRtNg6Au7zX5KEfAt4dxrTLthGgelsWTQHctgPjn2hXuUayrJzMLijeMyK A0uJPt62x8A8+OZYZqm+hiplkM27DZ9EkgTorQyUOhISJpMed4F589FMUMTopMSi7pc1aZG5 gEGRronPsuEXXfec8wnuW6PVryXchDM0NPmRG3xUXSnntyg3GARHkRc18pKYd2mFf4GHV+T6 US6tyXNcSzCp7qdpkWHNqcRpqp+yrzUUKvw6X+xyfwPo4deXbx///cJ5j9RRzseEPoerUWVp xOB4kadQcS2Pbd6/p7gyxTuKgeKwZq6w1ZrCb9uteRtGg7KS3yFHcbogaOxNyTbCxjrTM0hl 7pDJH2NzKB5tZJG92jv4l9//eHM+zJtXzcX0jg4/6Vadwo5HuVQvC/SGjGa6RkqY7LFEe6aK KUXf5sPEqMJcvr9++/zy5eP6oNJ3UpaxrC9dhi4YYHxsOmHaoBC2A1+c1Tj87HvB5n6Y5593 2xgHeVc/M1lnVxa0KjnVlZzSrqojPGbPhxo5Jp8RKXsSFm3wmz+YMbVJwuw5pn88cHk/9b4X cZkAseOJwN9yRFI03Q7d7loo5a0Irlds44ihi0e+cFmzR+vLhcAGlghWrqQyLrU+EduNv+WZ eONzFar7MFfkMg7N43REhBxRimEXRlzblKY6s6JNK5Uphuiqazc2txY9K7Gw6O21Ba2yW2+K rIWom6yCSYYrQVPm8Eojl55183Jtg7pIjznc9oSnMLhku76+iZvgCt+pcQLPW3PkpeK7icxM xWITLE0j1LWWnjr0etxaH1JcbdguEsqBxcXoy2Ds60ty5tujvxUbL+TGy+AYknBrYMy4r5FT LNwBYJiDaTu2dqH+UTUiKy6NyQZ+SsEaMNAoCvNW0IofnlMOhtvk8l9TkV1JqYmKBtsqMeTY lcjOfg1iPWO2UqCRPCqDNY7NwBczcmdqc+5suwzOJc1qNPJVLZ+zuR7rBHZw+GzZ3LqszZHj DoWKpikylRFl4IYQekJUw8mzMK9SaRC+k9jwI/wux5b22knhIKyMiPW7/rClcZlcVhJr5/Oc DOZthqIzI3CZVnY3jjA3QVbUnGYNNGfQpD6YTooW/HQMuJKcWnODG8FjyTIXcDNdmo85LZw6 SkT+fBaqy9PsllepqbEvZF+yH5iTN0MJgeuckoFpLbyQUr9v85orQylOyl0TV3Z4/6luucwU dUAuSlYODEb5773lqfzBMO/PWXW+cO2XHvZca4gSXk/i8ri0h/rUiuPAdZ0u8kzD24UAPfLC tvvQCK5rAjwejy4Ga+RGMxSPsqdINY0rRNOpuGhPiCH5bJuh5frSscvF1hqiPdihm08xqd/a aDzJEpHyVN6g3W2DOovqhm48GdzjQf5gGevyxMRpoSprK6nLjVV2EKt6RWBEXMExjpsy3pou 101WpN0u3mxd5C423e9b3P4ehyUlw6OWxbwrYiuXRf6dhMFYbyxN412WHvvQ9VkXcDgyJHnL 84dL4Hvmk58WGTgqBc4Q6yob86SKQ1NXR4Ge46QvhW/uDNn8yfedfN93DX3AzA7grMGJdzaN 5qlfOi7ED7LYuPNIxd4LN27OvDWEOJiGTV8ZJnkWZdOdc1eps6x3lEYOykI4Ro/mLK0HBRlg S9PRXJbnUZM81XWaOzI+y3k0axzcswTlfzfIdtcMkRe57KhuEos1k8N3Bk2q23bPu63v+JRL 9d5V8Y/9MfADx3DM0FSMGUdDKzE53vCL8XYAZ/eUy1zfj12R5VI3cjZnWXa+7+i4UvIcwQom b1wBulOwDR1yoSTaM2qUctheirHvHB+UV9mQOyqrfNz5jtEk19VSu60cojRL+/HYR4PnmDrK /FQ7RKj6u81PZ0fS6u9b7mj3Ph9FGYbR4P7gS3KQAtTRRveE+y3tlWcBZ9+4lTF6cgJz+51r wAFnvrFCOVcbKM4x2agLYHXZ1B3yrYEaYejGonXOpiU6nMG93A938Z2M7wlFpcqI6l3uaF/g w9LN5f0dMlMKrZu/I2mATssE+o1r+lTZt3fGmgqQUrsGqxDgO0lqbD9I6FSjd9Yp/U506I0U qypcElCRgWM6U+egz+AzMb+Xdi91pGQTobUVDXRHrqg0RPd8pwbU33kfuPp3321i1yCWTagm XUfukg7guSC3kqJDOCSxJh1DQ5OO6Woix9xVsga9NmgybTkiJ0Tm1JoXGVqDIK5zi6uu99H6 F3Pl0Zkh3nREFHYEganWpbZK6ihXUqFb5+uGeBu52qPptpG3c4ib91m/DQJHJ3pP9g6QHloX +aHNx+sxchS7rc/lpNQ70s+fusgl9N+DEXJuH/XknbWfOa/RxrpCm7AG6yLlWsrfWJloFPcM xKCGmJg2B5cxt/Zw6dFe+0K/rysBLsfwDuhE90ng/AK98JJ9n8gDzR7kgsdsgumAKhy8kS+K rI79xreOEBYSHAldZdsKfEViovWZgCM2HHLsZG/jv0Oz+3CqBIaO90HkjBvv9ztXVD3juqu/ LEW8sWtJnRgd5Fogs75UUWmW1KmDU1VEmQRE1J1eIPWvFvb9zAczlgPCTs77E22xQ/9ubzUG +OQthR36OSOmr1PhSt+zEoHXkQtoakfVtlJncH+QEi6BH9/55KEJZMduMqs409HIncSnAGxN SxK8pfLkhT3ZbkRRis6dX5NIWbYNZTcqLwwXo2fbJvhWOvoPMGzZ2scY3gVkx4/qWG3dwzvu cDDH9L1U7ILYc8kRvcDnh5DiHMMLuG3Ic1ptH7n6sk/9RToUISdRFcyLVE0xMjUvZWslVlvI aSPY7q2KVYd6W3tIlgJvISCYK1HaXpUwdtUx0NvoPr1z0cq/khq5TFW34gpmfO4uKjWk3Sye La4H6ezTRmzLnG44KQh9uEJQC2ikPBDkaD74OCNUm1R4kMLJWWfOITq8uWc+IQFFzBPTCdlY iKBIZIWJlnty59mWKP9H/QBmMIaJBim++gn/xV4cNNyIFp3bTmiSowNUjUoNiUGRzaCGpkcQ mcASAmMmK0KbcKFFw2VYg3dy0ZgmV9MngjrKpaMtKUz8QuoIzkxw9czIWHVRFDN4sWHArLz4 3qPPMMdSbyMtN/G4Fpw51s5JtXvy68u3lw9vr98m1mh25CDqatoET8/O962oukJ52ujMkHOA FTvfbOzaG/B4AL+h5qHGpcqHvZw4e9Nn7Hxz2AHK1GBPKYiWx6GLVCrE6jL19Ayg+uju9dun l8+22dx0FpKJtoBtTtzskogDU0cyQKkJNS287QZe1BtSIWY4fxtFnhivUt8VyP7DDHSEM85H nrOqEZXCvMxtEsgM0CSywbShQxk5CleqHZwDT1atcvbe/bzh2FY2Tl5m94JkQ59VaZY68hYV PIbXuipOOwgcr9jhvBmiO8Md0rx9cjVjnyW9m287RwWnN+x91aAOSRnEYYTs8nBUR159EMeO ODUyKKQMjNwaPLteHIEsz9mokvttZJ7LmZwclM05zxxdBo6i0cYPzrNz9ajc0dx9dmod9Q0e XYOdb5H10XRHrgZ79fXLTxDn4bse9SD7bFvPKb4oD3KeKTzfHucr5RyExJ2Hid6PMzapXW2a kW0p7M78eEoPY1Xao5p4OTdRZxFs00RCOGPaTwwgXI/0cXOftyTBzLpy5fuFQsfe1Icp40xR Lp9D7JzfxO2KQWaEK+ZMHzjnrAKVgF1YE8KZ7BJgkbs+rcqz1IntXqLhNVrA885m17Tziyae m47OHUifMGCkz0q5eyrS0w3QjjErFvjt1Lk9kAudCXzX2VjJY84CKk/dIAXdjDPutY8jpg9q 2BmLnQrULOBsvfyYX12wMxbYAeb2tKhhd30w+SRJNdhF1rC70Im/zbvdQPfdKX0nIlrRWSxa 3c2CIy8PWZsKpjyTn3EX7hb3einzrhcnVksh/F9NZ9WjnxvBTLRT8HtZqmSkwNP6FZXJZqCD uKQt7Kv5fhR43p2QrtLDK09sWWbCLamHTqrzXNSFccadvF03HZ83pt0lAPvUvxbCruqWmebb xN3KkpNCWjcJle1tE1gRJLZK9ZCKdbjdVjRsyVbKWRgVJK+ORTa4k1j5O0K8ksuOqh/T/CQF cVHb6qQdxC0Yeqn2MwNbwe4mgiMUP4zseE1ra6MA3ikAetDFRN3ZX7PDhe8imnJK+5s9mUnM GV4KLw5zFywvDpmALeKObvlQduQFBQ7jnE2k1sJ+/kyAJHL0+yXImviy0UFW9rRscDOQWGBP VCXT6kWVojtI4JVdu90qsNH2ILTfa5TQc5Woizwn82Yhuc223P9AmysmqrUqu+Kq8WTqIlX9 vkaPI16KAid6vibTJVTrY+GeF7JYN3BVRTIhvHsFBWtaWRWPHDYW2VUufJZdF4Wa+RbMxN40 6OIY3C7mOkzelDmYvKYF2uwHFFZ65I62xgU8rKdu2LBM1+NXURU1ubhSBT/i+5tAm9fwNSD1 JQLdBDz/U9OU1W52faShH5NuPJSmO069ewG4CoDIqlFvmDjYKeqhZziJHO583fk2tvD8YclA oADJnlGXGcsexMZ8W20ldFtyDCyE2sp8PHrliCBdCbKmNQizO65wNjxXpsu5lYFa5HA4Xezr iquWMZEjwuwtKzOAK2xzJQpXUaalxfQ6AVy+f/jg3mNdhIa53QbeSEpRjRt0LrOipiFEl7QB Ok9qbnmbTVdRjUcOHAWZo8n+gRoZrulT4QESWeHZtTP3WOVvIiwS+f+G71AmrMLlHbWk0agd DJt3rOCYtMjGYmLgYo6bIVs1JmVfYTbZ6nKte0pe5XeBD8ThmSlhH4bvm2DjZoiNDWXRd0sl tXhGsntGiDuIBa6PZk+w9/vXJtct1F6k7nSo6x52zFX761u8QcLckEang7J21M06WYE1hsGU 0NzFUthZBkVXhyWoHyXRb5isz5eozJNfP/3OlkBqyQd9JCOTLIqsMp/6nRIlk/6KoldQZrjo k01oGp/ORJOIfbTxXcSfDJFX2B3BTOhHTAwwze6GL4shaYrUbMu7NWTGP2dFk7XqGAQnTC6u qcosTvUh721QfqLZF5bjpsMf341mmeTeg0xZ4r9+/f728OHrl7dvXz9/hj5n3f5Wied+ZKri C7gNGXCgYJnuoq2FxeglAVUL+RCd0wCDOTLGVkiHjIgk0uT5sMFQpUy/SFr6IWTZqS6klvMu ivaRBW6Rlw+N7bekP6J3ASdA30NYh+V/vr+9/vbwT1nhUwU//O03WfOf//Pw+ts/Xz9+fP34 8I8p1E9fv/z0QfaTv9M26NFMpjDy3JIWm3vfRsaugJP5bJC9LIe3qgXpwGIY6GdMxyIWSK8B zPBjXdEUwCVwf8BgAiLPHuzTE490xHX5qVJeRfEUREj1dU7Wfv6UBrDytde9AGenwCPjLiuz K+lkWrkh9WZ/sJKH2sNnXr3Lkp7mds5P50Lgy5Ia70hx8/JEASkiG0v253WDdsQAe/d+s4tJ L3/MSi3IDKxoEvPqqBJ6WOtTUL+NaA7KjyOVyNftZrACDkTSTSo1Bmty3V9h2H0HIDfSwaVw dHSEppS9lERvKpJrMwgL4Lqd2kROaH9iNp0BbvOctFD7GJKMuzAJNj4VQ2e5xD3kBcm8y0tk Mq4wtF2ikJ7+llr9ccOBOwJeqq1cLQU38h1SR3664OdNACanQAs0HpqS1Ld9bGmi4xHj4LZJ 9Nbn30ryZfRFUoUVLQWaPe1jbSIWtSr7U+piX14+gyD/h540Xz6+/P7mmizTvIZb5xc6+NKi IoIiaYKtT+REI4jRjipOfaj74+X9+7HGa1qoUQHeFq6kT/d59Uxuo6uJSYr/2YuL+rj67Vet mkxfZsxQ+KtW5cb8AO3pAV5jrzIy3o5KSK32LS6FBHe6y+Hn3xBij7BpJiNOkVcGPBdeKqof KadC7CQCOGhPHK51L/QRVrlD8/WUtOoAkSsx/DJ9emPh7pqweJnLRRMQZ3Q02OAf1EsdQFYO gGXLelf+fChfvkPnTValz3L5A7GowrFi9IBnJdJjQfB2j4wpFdafzZvDOlgJz7GG6O0zHRaf 1ytIqjOXDm9NzkHBO19q1RO8NAz/yoUHerEZMEvLMUBsEaJxcqa0guO5szIGtejJRumDmAq8 9LDzUzxjOJErvCrJWJD/WMZWQHWVWdsh+I0cAmusSWhXuxGHtRN46H0OA19J+NgTKCQBVYMQ B0nqPn+XUwAOPqzvBJitAGWg+nipmozWsWK6oxSEVq5wsgnnIlZqZC8axmUJ/x5zipIU39mj pCjhfaaCVEvRxPHGH1vzuajlu5HN0gSyVWHXgzYpkX8liYM4UoJobxrD2pvGHsFZPqlBqayN R/Nx+QW1G286lO46UoJaT10ElD0p2NCC9TkztNSxuu+ZjzcpuM2REYSEZLWEAQON3RNJU2p6 Ac1cY/Ywmd8fJqgMdySQVfSnC4nFWSpIWCqEW6syusSP5XLVI18EemKX10eKWqHOVnEsGwTA 1ARb9sHOyh8fyk0Idk6jUHIUN0NMU3Y9dI8NAfH9swnaUsjWR1W3HXLS3ZQ6Cg4wQZAwFLrO vUbwpBApBK3GhcNXVxRVN0mRH49weo4Zxl5PogN4cCYQ0WUVRkUJ2GZ2Qv5zbE5EqL+XdcLU MsBlM55sRpSrNS5oDcZWlm2bB7W7bgxC+Obb17evH75+ntQNolzI/6OdRSUT6ro5iES/gLiq gar+imwbDB7TG7kOCmciHN49S91IWQb1bU20iumtRxNEtntwaANmRXBDAbYzV+pszlfyB9ph 1Zb7XW5ssX2f9+AU/PnT6xfTkh8SgH3XNcnG9F8mf2D/mBKYE7GbBULLfpdV/fioDopwQhOl LLBZxlqMGNw0Ly6F+OX1y+u3l7ev3+y9xr6RRfz64b+ZAvZSWkfgSbyoTRdZGB9T9Fwz5p6k bDeMnuBl9e3Gw4+okyhSB+ycJBqhNGLax0Fjeke0A5jHV4StExiu65GPVS9LPLrFrG6U58lM jKe2vqBukVdom9wIDzvTx4uMhk3eISX5F58FIvRKyCrSXBTRhTvT5/KCw7W5PYNL9V12nQ3D lKkNHko/NrenZjwVMVjNXxomjroLxhTJMqqeiVKuxMPOi/FpicUiEUlZm7F1gZnp8uqEDtpn fPAjjykfXNbmiq2uowZM7eiLgjZu2X8vZYU7fTZcJ1lh+nhbcp5fRRk7rB8vEW9MV+mQ8eSC 7lh0z6F0wxvj44nrVRPFfN1MbZluBwtAn+sr1nrRIPDaEBE+00EUEbiIyEVwXVsTzjw4Ru3i j3zzJc+n6tKNSKbMHJUiGmscKVVd4Eqm4YlD1ham9xdT0DBdQgcfD6dNwnRUawd5GSHmfq4B BhEfONhxA9C091nK2TzF3pbriUDEDJE3TxvPZ2Rl7kpKETue2HpcX5NFjYOA6elAbLdMxQKx Zwl4vN5nRgDEGLhSqaR8R+b7KHQQO1eMvSuPvTMGUyVPSbfxmJTUukspfNj3LOa7g4vvkp3P TVkSD3gcXsXhxH5asi0j8XjD1H+XDhEHlzHyr2DggQMPObwAu2U4VprVvlaqfN9fvj/8/unL h7dvzG29ZXaRukXHzUdy5dkcuSpUuEOkSBIUGgcL8cihnEm1sdjt9nummlaW6RNGVG66ndkd M4jXqPdi7rkaN1j/Xq5M516jMqNrJe8lix7tZNi7Bd7eTflu43BjZGW5OWBlxT12c4cMBdPq 7XvBfIZE75V/c7eE3Lhdybvp3mvIzb0+u0nulii711QbrgZW9sDWT+WI0513gef4DOC4qW7h HENLcjtWBZ45R50CF7rz20U7Nxc7GlFxzBQ0caGrd6pyuutlFzjLqUxtlhWlSyBbEpReCpwJ apeJcTimucdxzaeOrzkFzNrGXAi0lWiicqbcx+yEiHcVEXzcBEzPmSiuU00n3xumHSfKGevM DlJFlY3P9ag+H/M6zQrzNYGZs7cGKTMWKVPlCysV/Ht0V6TMxGHGZrr5Sg8dU+VGyUw/ywzt MzLCoLkhbeYdzkpI+frx00v/+t9uLSTLqx4bIi+qoQMcOe0B8LJGZzom1Yg2Z0YObJZ7zKeq YxVO8QWc6V9lH/vcqhPwgOlYkK/PfsV2x83rgHPaC+B7Nn14nJUvz5YNH/s79nul8uvAOTVB 4Xw9ROwKo9+GqvyrTaarw1j6bp2cK3ESzAAswe6WWUDKFcWu4JZGiuDaTxHcfKIITmXUBFM1 V3iireqZPaq+bK47dpulP/jcyiN7uuTKO97FEPigb6PzyAkYj6LrG9GfxyIv8/7nyF9utdVH oqXPUfL2CW+N6V1GOzBs2psPk2krYnR2sEDj1SfotKlJ0DY7obNpBarnbbzVtvn1t6/f/vPw 28vvv79+fIAQtmBR8XZyEiNH4wqn5hMaJPtXBkh30jSFTSV06WX4Q9a2z3B+PtDPsA0xF3g4 ddR0U3PUSlNXKDU80KhlXKDdzN1EQxPIcmp8puGSAsjBibaK7OEf5OLBbE7Gjk/TLVOF2FpS Q8WNliqvaUXCQzDJldaVtYU8o/i+vO5Rh3jb7Sw0q94jia3RhrxUpFFy9q7BgRYK2U1qz0dw SuVoALTzpXtUYrUAupWox6EoRZQGUkTUhwvlyFnxBNb0e7oKzo+QXb3G7VJKiTIO6JGlWRok 5km+AokQ0xi2PVwx31TQNUw8zSrQVr4mn4lUxmp4iM2dF4XdkhTbPil0gD48dnSw0NNdDRa0 U4oyHY/qgMqYzpyCajE/V+jrn7+/fPloCzDrNTYTxY52JqaixTrdRmQbaAhUWq8KDayOrlEm N3VtI6ThJ9QVfkdz1c4PrT7S5EkQW1JG9gd9+IDs/kgd6knimP6Fug1oBpMrVSqG050XBbQd JOrHPu1bCmXCyk/3yxudG+mjCStI08UWWgp6J6r3Y98XBKYm4pMcDPfmCmgC453VgABGW5o9 VauWvoFPuQw4slqanHxNAi7qo5gWrCuCOLE/gng/1l2Cvp6mUcb5xNSxwGOxLWgmX6McHG/t 3inhvd07NUybqX8qBztD+nbbjG7RDUUt8KjXfC3EiMf7BbQq/jbvy6+SyR4d092j/Aejht4N 0g1eyFn6TJs7sRG5pE7lHz6tDbh9pylzP2Wa7uQErr7TuJBplXKxbblbeqkQ+luagXJTtLdq UstI60uTMESH3rr4eVd3dD4aWngshvbssh569aDReuveLrV+0bQ73P8aZDK+JMdEU8ldP317 ++Pl8z19WZxOUgHArpmnQiePF2QgwaY2x7mZ75L7o9YKVCH8n/79aTIyt2yPZEhtIa1exjQV lJVJu2BjLrwwEwccg5QyM4J/KzkCK6or3p2Q1TzzKeYndp9f/ucVf91kAXXOWpzvZAGFrhAv MHyXefyPidhJyJWUSMFkyxHC9O2Po24dROCIETuLF3ouwncRrlKFoVROExfpqAZksGES6FYV JhwlizPzOBIz/o7pF1P7zzGUGwPZJp35mJkB2rY6JqcduPMkLBHxqpKyaAFpkqeszCvOxQIK hIYDZeDPHtn7myHA2lLSPbLwNQNoI5Z79aKuj/6giIWsn33kqDzYZUK7eQa3+Cd30Xe+zfZ6 YLJ0MWRzP/imll4iazO4Vi5FcWoaUOqkWA5lmWC74AocFtyL1l2axrzvYKL0bgvizrcSfXcq NG/MKNNOgUiT8SDgZoWRz+ynn8SZ3ISDPDNNsSeYCQwGaBgFy1WKTdkzD/GBnecJbn3LVYJn HpjOUUTSx/tNJGwmwa7LF/gWeOZiYcZB6pgHJyYeu3CmQAoPbLzITvWYXUObAdfNNmrZoc0E fUVpxrtDZ9cbAktRCQucox+eoGsy6U4ENvyj5Dl9cpNpP15kB5Qtjx+4X6oMXrPjqpgsyuaP kjiy1jDCI3zpPOp5AqbvEHx+xgB3TkDlKv94yYrxJC6mX4Y5IXgQbYfWC4Rh+oNiAp8p1vwk QomepZo/xj1G5qcN7BTbwTSOmMOTATLDeddAkW1CyQRTkZ4Jaw01E7CENffxTNzcTplxPMet +apuyyTTh1vuw8Dzhb8NCvYT/A1yDLz0KeU0uZ6CbE1fDEZkspzGzJ6pmulJExfB1EHZBOh0 a8a1SVV5ONiUHGcbP2J6hCL2TIGBCCKmWEDszEMYg4hcech1P59HhAxVTAI9vLgIq/IQbphC 6b0CLo9pu2Bnd3k1UrVGsmGk9OysjBkrfeSFTEu2vZxmmIpRF3zlYs+0sl4+SE73po69yhBL E5ijXJLO9zxG6Fl7Xyux3+/RqwhV1G/huRZ+koVLP6NAdsZEWVA/5bI2pdB0Q1ifSmm/1C9v cs3JOaGHVyE6eEspRBeEVnzjxGMOL+FdWxcRuYiti9g7iNCRh4+9iS/EPkCOrBai3w2+gwhd xMZNsKWShGnojIidK6kdV1fnns0amxOvcELuO87EkI9HUTG3h5aY+GxvwfuhYdKDS7KN+WYD IUZRiLbsbD6R/xE5zHBt7WYb81nZmVT+wvrMdL6wUB3aYl1hn62N6ZkegZ2iGxzTEHn0CC7a baJrhJzEbfwIdrTRkSfi4HjimCjcRUytnTqmpPOrW+xnHPuuzy49aHZMckXkx9jz9EIEHktI BVywMNPL9SmoqGzmnJ+3fsi0VH4oRcbkK/EmGxgcDkKxaFyoPmbkwbtkw5RUyuHWD7iuI9fl mTAVyoWw7SoWSk1pTFfQBFOqiaCuozGJ7zaa5J4ruCKYb1WqV8SMBiACny/2JggcSQWOD90E W75UkmAyVw8WczIUiICpMsC33pbJXDE+M3soYstMXUDs+TxCf8d9uWa4HiyZLStsFBHyxdpu uV6piMiVh7vAXHcokyZkZ+eyGNrsxA/TPkHPWS5w0wVhzLZiVh0D/1AmrkFZtrsIGc+uE18y MOO7KLdMYPBAwKJ8WK6DlpyyIFGmdxRlzOYWs7nFbG6cKCpKdtyW7KAt92xu+ygImRZSxIYb 44pgitgk8S7kRiwQG24AVn2id+jzrq8ZKVglvRxsTKmB2HGNIold7DFfD8TeY77Tuhi1EJ0I OXFevR/68bEVj1nF5FMnydjEvBRW3H7sDsxcUCdMBHVaj64mlMQX8hSOh0GjDbYO5Tjgqu8A 77scmeIdGjG23dZj6uPYNWP4bONyvh2T47FhCpZXXXNpx7zpWLYNo4CTM5LYsgJIEvh62Eo0 XbTxuChdsY2l0sP17yDyuFpT0yE7ujXBbXAbQcKYmxhh3ohCroTT7MR8lZ6EHHECzzWnSIab s7XA52QOMJsNt/KBfY1tzE2DjawJTjaU29120zM10wyZnGqZPJ6iTffO92LBjLKub9I04WSN nFg23oabbyUThdsdM3teknTvcV0biIAjhrTJfC6T98XW5yLAG6Ls/GgaMTomvM4yz1iYQ98x Cl0nF3pMG0iYGzwSDv9k4YQLTR2EzkRaZlKbYcZTJhcXG26+lkTgO4gt7N8zuZddstmVdxhu 5tPcIeTUnS45wzYVuP3lKx94bu5SRMiIia7vO3agdWW55ZRNqbf4QZzG/I5It0P2TYjYcctz WXkxKyQrgfwQmDg3/0k8ZMVwn+w4je5cJpyi2ZeNz03ICmcaX+HMB0ucFeSAs6Usm8hn0r/m YhtvmQXotfcDbvVw7eOA2y+6xeFuFzJLbyBinxmuQOydROAimI9QONOVNA6SBqzXWb6Qor5n Zl1NbSv+g+QQODP7D5rJWIoYTJk410/U2xVj6Xsjo/srJdH01DsBY5X12MnQTKiD8A4/2ztz WZm1p6yChzinU+FR3Tway+5njwbmSzKarqRm7NbmvTio10bzhsk3zbSX21N9leXLmvGWd/pJ kDsBj7CJpd6CfPj0/eHL17eH769v96PAC6+wl5SgKCQCTtsuLC0kQ4PvvhE78DPptRgrnzQX uzHT7Hpssyd3K2flpSB2DTOFLxwov3ZWMuAEmAPjsrTxx9DGZstLm1FOd2y4azLRMvClipny zf5RGCbhklGo7MBMSR/z9vFW1ylTyfVsDmWik79JO7TyHMPURP9ogNqu+svb6+cHcJ/6G3qo VpEiafIHObTDjTcwYRY7nvvh1reBuaxUOodvX18+fvj6G5PJVHTwV7LzffubJkcmDKHNedgY cnnI453ZYEvJncVThe9f/3z5Lr/u+9u3P35THqycX9HnY1cnzFBh+hX4AGT6CMAbHmYqIW3F Lgq4b/pxqbWd6Mtv3//48ov7k6Z7s0wOrqhzTNO4hfTKpz9ePsv6vtMf1FFrD9OPMZwXjxcq yTLiKDg30IcSZlmdGc4JLJc2GWnRMgP28SxHJuy6XdRxi8XbT/jMCHFLu8BVfRPP9aVnKP1q kXpLY8wqmMRSJlTdZJVyKgeJeBY931BTDXB7efvw68evvzw0317fPv32+vWPt4fTV1kjX74i O9Q5ctNmU8oweTCZ4wBSbyhW13iuQFVtXmdyhVJPLZnzMBfQnGAhWWZq/VG0OR9cP6l+6tx2 PVwfe6aREWzkZEghfYbMxFX3IobycmS46SDLQUQOYhu6CC4pbR9/H4aHBM9SG8z7RJjPoa77 wnYCcJXM2+65IaFt1ngi8hhielrRJt7neQtWqDaj4K7hClbIlFLzbHNayzNhF9fPA5e76Mp9 sOUKDH7k2hL2KRxkJ8o9l6S+yLZhmNmtss0ce/k58K40k5z2z8/1hxsDao/HDKE819pwUw0b z+N69fRgBsNIXa7tOWI2nmC+4lINXIz5UTObmQ25mLTkGjQE07i253qtvm7HEruAzQoObfhK WzRU5mG3cghwJ5TI7lI0GJSC5MIlXA/wfiHuxD1c9OQKrh41sHE1d6IktOfl03A4sMMZSA5P c9Fnj1wfWB7ftLnpqirXDbQ7JloRGmzfC4RPt5O5ZoZbpj7DLFM+k3Wf+j4/LEEbYPq/8hzG EPNNTG70F3m58z2fNF8SQUdBPWIbel7WHTCqr7aR2tEXhDAo9d6NGhwEVGo1BdWtbDdK7Z0l t/PCmPbgUyMVNNylGvgu8mHqeZUtBaUWIwJSK5eyMGtwvqD10z9fvr9+XGfr5OXbR9OxV5I3 CTO7pL32iD3fLfpBMmBZxiTTyRZp6q7LD+hdUvPSLATp8AsQAB3Azyry1w5JJfm5VnbZTJIz S9LZhOoi2aHN05MVAV7qu5viHICUN83rO9FmGqP6iT8ojHpEnY+KA7Ectj6VvUswaQFMAlk1 qlD9GUnuSGPhObgzHRAoeC0+T5RoW0mXnfjfViB1yq3AigPnSilFMiZl5WDtKkOul5VH7H/9 8eXD26evX6bH+uz1VnlMycIEENuyX6FduDP3YmcM3dlRDqjpvWIVUvRBvPO43JgnMzQOT2bA sweJOZJW6lwkpmnUSnQlgWX1RHvP3FBXqH0jWaVBbNNXDJ8gq7qb3phBLj+AoJeFV8xOZMKR HZBKnPprWcCQA2MO3HscGNBWzJOQNKK6GTAwYEQiT2sUq/QTbn0tNcCbsS2TrmkkMmHomoHC 0K1wQMCHweMh3Ick5LSnUeAX7oE5SQ3mVrePxBJPNU7ihwPtORNof/RM2G1MbMsVNsjCtIL2 YakaRlLdtPBzvt3ICRK79ZyIKBoIce7huSbcsIDJkqFjS1Aac/OeMgDoCUPIQh8ENCUZovlT tw1I3agr+UlZp+jJa0nQS/mAqSsVnseBEQNu6bi0bxVMKLmUv6K0+2jUvJy+ovuQQeONjcZ7 zy4C3OJiwD0X0ryOoMB+i6x2ZsyKPC/AVzh7r54TbXDAxIbQ5WkDr/ohIz0M1iEYsW+8zAi2 V11QPF9N9/mZ2UC2sjXcGHe3qlTLvXgTJJcIFEY9LCjwMfZIrU8rUJJ5ljDF7PLNbjuwhOzl mR4dVAjYRgMKLSPPZyBSZQp/fI5lfyfyTl9oIBUkDkPEVvDsQULvA/flpw/fvr5+fv3w9u3r l08fvj8oXu3qf/vXC7sHBgGIMZWCtDRcN4r/etqofPoZvzYhcz69TwpYDw+BhKEUfn2XWAKT OvzQGL7/NKVSlKR/qw0PuQIYsdKreihx4gE3YXzPvKCjb82Y9jMa2ZG+anviWFE6cdv3beai Ew8mBox8mBiJ0O+3XHwsKPLwYaABj9pdfmGsqVIyUvKbh/jzpo3dZ2dGXNCsMvkKYSLcCj/Y hQxRlGFExQPnKUXh1K+KAokrEyVJsYMllY9tRq40LepcxwDtypsJXjM0/YSoby4jZNQxY7QJ lS+UHYPFFrahUzM1IFgxu/QTbhWeGhusGJsG8qeuBdhtE1tivz6X2vEQnTxmBl/hwnEczLQx b8nPMJDDizxZs1KK6CijtqOs4Edal9Qtl17UEOcHBmhX2XpERSLMl89Gc3aft8ntkYJsP36m z4a7VpZLurbZ5QLR3aSVOOZDJodTXfTobsYa4Jq3/UUUcM+pu6D6X8OAiYOycLgbSuqTJyTz EIWVUkJtTWVv5WDVHJsSF1N4QW1waRSaQ89gKvlPwzJ6Mc1Sk8wo0tq/x8vuCP4K2CBkoY8Z c7lvMLSPGhRZT6+MsSxfjvkMVo9Z5kwPhcEOyAgVsBVryQmTsvYECIklwkoSDdsg9B4BOxDI IhszEVvTdP2Mma0zjrmWRowfsG0tmcBnu5hi2DhHUUVhxJdOcchx1MphTXfF9ZLXzVyjkE1P r4jvxNvywzvvin3oscUH2/Rg57NDWCoVW74ZGTXAIKV+umO/TjFsS6p7/XxWRA/EDN8mlpKI qZgdPYXWi1zU1nwYZaXslTrmotgVjSzlKRe5uHi7YQupqK0z1p6X7taCnlD8YFXUjh151mYA pdjKt7crKLd35bbDl3AoF/BpThtaWD/A/C7ms5RUvOdzTBpfNhzPNdHG58vSxHHEN6lk+Lm8 bJ52e0f36bchL8YUwzc1caWEmYhvMrKXgxleINK9npWhq0+DOeQOIhFS+WDzcc1Z9vaOwR3j gRefzfHyPvMd3FXKfr4aFMXXg6L2PGX6rlthdazdNuXZSXZlCgHcPHpbk5CwJXBFF7vWAOa1 kb6+JOcuaTM41uzxq8FGDLoxZVB4e8og6CaVQcllC4v3m9hjezrdLTOZ8sqPmy4oG8EnB1TH j6kuKuPdlu3S1FeHwVj7XQZXnOR6l+9seiF2qGv83DwNcG2z44HX5nSA5uaITVZzJqUWp+O1 LFmNr5Mf5G1ZLUJScbBhpZiidhVHwQ0qfxuyVWTvTGEucMglvQPFyzl7J4ty/ORk72oRznd/ A973sjh2LGiOr057w4twe17xtTe/EEe2swyOemlaKduT98pd8X2RlaC7MJjhJT3dzUEM2mMh Eq8Qh9x0fdTS7XAJoAcLitx0U3lojgpRPvYCFCvNEomZWyV5O1bZQiBcikoHvmXxd1c+na6u nnlCVM81z5xF27BMmcBJY8pyQ8nHybU7H+5LytImVD1d88T08yEx0eeyocrafHtYppFV+Pc5 H6JzGlgFsEvUihv9tItp0wLh+mxMclzoI2wTPeKYYCmGkR6HqC7Xuidh2ixtRR/iije3DuF3 32aifG92None8upQV6lVtPxUt01xOVmfcboIcwtWQn0vA5Ho2HObqqYT/W3VGmBnG6rM5f+E vbvaGHROG4TuZ6PQXe3yJBGDbVHXmV8yRwGVuS+tQe2Qe0AYXJo1IZmgeUACrQTWmhjJ2hxd 85mhsW9F1ZV539Mhp0qybApBE4nqVHN7Qck4HOphTK8pbtLaqMnEOsMDpKr7/IhkL6CN+byr sm5UsCnTpmCj1PVgZ6B6x0WA3TX0PLkqxHkXmhtoCqP7QwBqc0tRc+jJD4RFEQd+UAD9jprU vBpCmC9EaAC9UAYQeaEC1N7mUnRZDCzGW5FXso+m9Q1zuiqsakCwlB8FavuZPaTtdRSXvu6y IlNv567vac17zm//+d30Lz1VvSiVMQ2frRz4RX0a+6srANis9tAxnSFaAU7aXZ+Vti5qfhbG xSvvrCuHX4TCnzxHvOZpVhPbI10J2g1YYdZsej3MY2Dyhv7x9eum+PTljz8fvv4Oe/lGXeqU r5vC6BYrhg8dDBzaLZPtZsptTYv0Srf9NaG3/Mu8Uguo6mTOczpEf6nM71AZvWsyKWizorGY M3qnUUFlVgbg7BdVlGKU9d1YyAIkBTIK0uytQn6BVXHkegGuODFoCkZ+9PuAuJaiKGpaY3MU aKv89DPyLG+3jNH7P3z98vbt6+fPr9/sdqPND63u7hxy0n26QLcT67O5zefXl++vIGVVf/v1 5Q0uT8mivfzz8+tHuwjt6//9x+v3tweZBEjnbJBNkpdZJQeReZfQWXQVKP30y6e3l88P/dX+ JOi3JVIwAalMb9kqiBhkJxNNDwqlvzWp9LkSYL2mOlmHo6VZeRnAxgNussqpEd4QRjbsMsyl yJa+u3wQU2RTQuEbl5Odw8O/Pn1+e/0mq/Hlu5zDwDAC/n57+K+jIh5+MyP/l3HBECyXxyzD NsW6OUEEr2JDX2N6/eeHl98mmYEtmqcxRbo7IeSU1lz6MbuiEQOBTl2TkGmhjLbmRp4qTn/1 kJtRFbVAr2MuqY2HrHricAlkNA1NNLn57utKpH3Soe2Mlcr6uuw4QiqwWZOz+bzL4NrRO5Yq As+LDknKkY8ySfO5d4Opq5zWn2ZK0bLFK9s9eK1k41Q39DD3StTXyPSThgjTrRQhRjZOI5LA 3BJHzC6kbW9QPttIXYZcRhhEtZc5mSd2lGM/VmpE+XBwMmzzwX+QG1ZK8QVUVOSmtm6K/yqg ts68/MhRGU97RymASBxM6Ki+/tHz2T4hGR+96mlScoDHfP1dKrnoYvtyv/XZsdnXyFmoSVwa tLo0qGschWzXuyYeesLLYOTYKzliyFtwWCHXP+yofZ+EVJg1t8QCqH4zw6wwnaStlGTkI963 IX55WAvUx1t2sErfBYF5rqfTlER/nWcC8eXl89dfYJKCR3GsCUHHaK6tZC1Nb4LpG5eYRPoF oaA68qOlKZ5TGYKCqrNtPcvlD2IpfKp3nimaTHREy37EFLVAWyw0mqpXb5xNY42K/MfHdda/ U6Hi4iHLAxNlleqJaq26SoYg9M3egGB3hFEUnXBxTJv15RZtpZsom9ZE6aSoDsdWjdKkzDaZ ADpsFjg/hDILcxt9pgSyzjEiKH2Ey2KmRnXx+9kdgslNUt6Oy/BS9iOy8pyJZGA/VMHTEtRm 4bbwwOUuF6RXG782O890+GjiAZPOqYmb7tHGq/oqpemIBcBMqn0xBk/7Xuo/F5uopfZv6mZL ix33nseUVuPWTuZMN0l/3UQBw6S3ABk7LnUsda/29Dz2bKmvkc81pHgvVdgd8/lZcq7yTriq 58pg8EW+40tDDq+eu4z5QHHZbrm+BWX1mLIm2TYImfBZ4puucZfuUCBHrzNclFkQcdmWQ+H7 fne0mbYvgngYmM4g/+0embH2PvWRc0XAVU8bD5f0RBd2mknNnaWu7HQGLRkYhyAJphtjjS1s KMtJHtHpbmWso/43iLS/vaAJ4O/3xH9WBrEtszXKiv+J4uTsRDEie2LaxXlF9/Vfb/9++fYq i/WvT1/kwvLby8dPX/mCqp6Ut11jNA9gZ5E8tkeMlV0eIGV52s+SK1Ky7pwW+S+/v/0hi/H9 j99///rtjdZOVxf1Fnnon2aUWxSjrZsJ3VoTKWDq8M7O9B8vi8LjyD6/9pYaBpjsDE2bJaLP 0jGvk76wVB4Vimuj44FN9ZwN+aWcnhhzkHWb29pOOViNnfahr1Q95yf/49f//PPbp493vjwZ fKsqAXPqCjG6Uaj3T9W74WNifY8MHyEPhwh2ZBEz5Yld5ZHEoZDd85CbF5YMlhkjCteuc+TE GHqR1b9UiDtU2WTWluWhjzdEpErIHvGdEDs/tNKdYPYzZ85W7GaG+cqZ4tVhxdoDK6kPsjFx jzK0W3hgVHyUPQxd/VES8rrzfW/MydayhjlsrLuU1JYS8+REZiX4wDkLCzoDaLiBa/t3pH9j JUdYbm6Q69q+JlM+vE9CFZum9ylg3jgRVZ93zMdrAmPnumnoJj68Tkaipin1BWCiIMH1IMB8 V+bw6ixJPesvDZglcCs7EPmPWZGhw1t9ILLsvRK8z0S0QyYo+vwk3+zohgTF8iCxsDU23Uug 2HreQog5WRNbk92SQpVtTDeK0u7Q0qilGHL1l5XmWbSPLEgW/o8ZalalWglQjCuyN1KKPbK+ WqvZHOUIHoce+SrUhZCCYedtz3aco5xfAwtmbklpRl+24tDYlImbYmKkRj15MbB6S26KRA2B 36Oegm3fohNsEx2VShJ6/+JI67MmeI70gfTq97AGsPq6QqcokYdJOd+jPSsTnaJsPvBkWx+s yu2O/vaIDBINuLVbKWtbqcMkFt5eOqsWFej4jP65Odf2MJ/gKdJ6zoLZ8iI7UZs9/RzvpOaI w7yvi77NrSE9wTrhYG2H+cwKtoXk8hKOaRZ3duDaD64gqfMS1yEmaDIb35qc+ys9TkmepQLY deMxb8sbcr86n9cFRGqvOKPVK7yU47ehmqRi0NGfnZ7ryDBwHjOSvTg6qd2Z7thzWaU2bLYO eLwa8y4sx7pcVFIKpj2LtwmHqnztrUV19to3Zomk6FjEuSU5pmYWx2xMktxSnMqymYwCrIwW cwE7MeVrzQGPiVwRtfamnMH2Fjs7RLs2+XFM805+z/PdMImcTy9Wb5PNv93I+k+Q65OZCqPI xWwjKVzzozvLQ+YqFtyFll0SPCde26OlFaw0ZeijY1MXOkNguzEsqLxYtai8p7Ig34ubQQS7 Pymq7Bply3dWL+rCBAi7nrQ9cJqU1spndk2WZNYHLD6E4WFPeyRp8xztlWQz5lZhVsa1LR41 UlqV9lpB4lK3y6ErOlJV8cYi760ONueqAtwrVKNlGN9NRbkJd4PsVkeL0s4ceXQaWnbDTDQW CyZz7a1qUC6ZIUGWuOZWfWrvQXlnpTQTVuPLFtyoamaILUv0EjV1MRNF288g9BbLFV7myTki O7VyEF+toZfUqSXVwOX2Na1ZvBkaBo6VoY01LmeXf3fJa2MP6JkrUyu3NR4YwNpSHNN3U5+C dAmTyWwJBGarbSFsGT+Z2GWBLbdWe7rxdJ/mKsbkS/tUDBxCZmDn0lqlxpICuyiapVM+HkB6 c8T5am8zaNg1AwOdZkXPxlPEWLKfuNC6w7pE5TG1xeHMvbMbdolmN+hMXRkBu0jf9mQfX8GM Z7W9RvmZRM0Z16y62LWlHMjf6VI6QFvDa41slmnJFdBuZpASHTmhcutFyuAvBtMm/HpU2v5Q mVICUnLHWdMuy+Qf4ALwQSb68GLtCymdDrR4tCMPEkxZNTpyuTJT1zW/5tbQUiA2LjUJMP1K s2v383ZjZRCUdhwiYNQhA1tMYGSk9Tj9+Onb603+/+FveZZlD3643/zdsU0mVxFZSg/uJlCb BPxsG3maLto19PLlw6fPn1++/Yfx3ad3ZPteqBWq9vvfPuRBMq+IXv54+/rTYmf2z/88/JeQ iAbslP/L2ipvJ0NPfQL+B5wmfHz98PWjDPy/H37/9vXD6/fvX799l0l9fPjt05+odPMqi7hs meBU7DahNS9LeB9v7JOBVPj7/c5ewmViu/Eje5gAHljJlF0TbuxD7qQLQ8/eiO6icGPZVgBa hIE9WotrGHgiT4LQUo8vsvThxvrWWxmjx/JW1HxLcuqyTbDrysbeYIa7LIf+OGpufbjhLzWV atU27ZaA1kmNENtI7dEvKaPgqxmxMwmRXuGZXEtxUbClyAO8ia3PBHjrWTvYE8zJBaBiu84n mItx6GPfqncJRtYKWIJbC3zsPPSa6dTjingry7jl9+TtIzAN2/0c7tvvNlZ1zTj3Pf21ifwN s+sh4cgeYWA14Nnj8RbEdr33t/3eswsDqFUvgNrfeW2GMGAGqBj2gbo9aPQs6LAvqD8z3XTn 29JBHT0pYYINq9n++/rlTtp2wyo4tkav6tY7vrfbYx3g0G5VBe9ZOPItJWeC+UGwD+O9JY/E YxwzfezcxfpVPVJbS80YtfXpNylR/ucV3hd5+PDrp9+tars06Xbjhb4lKDWhRj7Jx05znXX+ oYN8+CrDSDkGbofYbEFg7aLg3FnC0JmCPjlP24e3P77IGZMkC7oSPNKoW2/1bEfC6/n60/cP r3JC/fL69Y/vD7++fv7dTm+p611oj6AyCtATv9MkbF+1kKoKrO5TNWBXFcKdvypf8vLb67eX h++vX+RE4LRca/q8grsq1go1SToOPueRLSLBu71vyQ2FWjIW0MiafgHdsSkwNVQOIZtuaJ+9 AmqbTNZXLxC2mKqvwdbWRgCNrOwAtec5hTLZyW9jwkZsbhJlUpCoJZUUalVlfcWPTa9hbUml UDa3PYPugsiSRxJF/mkWlP22HVuGHVs7MTMXA7plSrZnc9uz9bDf2d2kvvphbPfKa7fdBlbg st+XnmfVhIJtHRdg35bjEm7Q7fEF7vm0e9/n0r56bNpXviRXpiRd64Vek4RWVVV1XXk+S5VR WdsGM2o+3/ljkVuTUJuKpLQ1AA3bK/l30aayCxo9boW9RQGoJVslusmSk61BR4/RQVi7vUli 73v2cfZo9YguSnZhiaYzXs4qEVxIzF7HzbN1FNsVIh53oT0g09t+Z8tXQG1jKYnG3m68Juhh LFQSvbT9/PL9V+e0kIK/HqtWwZmmbZUN3rDUwdGSG05bT7lNfneOPHX+dovmNyuGsUoGzl6G J0MaxLEH18injQmy3kbR5ljTbczp0qGeOv/4/vb1t0//zytYxqiJ31qGq/CT89+1QkwOVrFx gBxfYjZGc5tFIuexVrqmHzHC7mPzlXpEKusAV0xFOmKWXY7EEuL6ALvaJ9zW8ZWKC50cejSd cH7oKMtT7yMLbZMbyG0jzEWebfI4cxsnVw6FjBh199idffVXs8lm08WeqwZADd1aBnlmH/Ad H3NMPDQrWFxwh3MUZ8rRETNz19Axkeqeq/biWL1n7zlqqL+IvbPbdXngR47umvd7P3R0yVaK XVeLDEXo+aY9LOpbpZ/6soo2jkpQ/EF+zQZND4wsMYXM91e1x3r89vXLm4yyXCFVXle/v8nl 8Mu3jw9/+/7yJpX9T2+vf3/4lxF0Koay7uoPXrw3FNUJ3Fom8HCba+/9yYDUoE+CW99ngm6R IqGs2WRfN6WAwuI47UL9wjT3UR/gjvHD//Eg5bFcpb19+wSG1o7PS9uB3GaYBWESpMTeELrG lhjplVUcb3YBBy7Fk9BP3V+p62QINpb1owJNJ0oqhz70SabvC9ki5qPlK0hbLzr7aGNzbqjA tKSd29nj2jmwe4RqUq5HeFb9xl4c2pXuIZdPc9CA3i+4Zp0/7Gn8aXymvlVcTemqtXOV6Q80 vLD7to6+5cAd11y0ImTPob247+S8QcLJbm2VvzzEW0Gz1vWlZuuli/UPf/srPb5rYuTzd8EG 60MC676SBgOmP4XUorUdyPAp5Fozpvc11HdsSNbV0NvdTnb5iOnyYUQadb7wdeDhxIJ3ALNo Y6F7u3vpLyADR13fIQXLElZkhlurB0l9M/Cozw1ANz614lXXZuiFHQ0GLAibUYxYo+WH+yvj kRj16hs34OygJm2rr4VZESbV2eylySSfnf0TxndMB4au5YDtPVQ2avm0mzMVfSfzrL5+e/v1 Qcg11acPL1/+8fj12+vLl4d+HS//SNSskfZXZ8lktww8ermubiM/oLMWgD5tgEMi1zlURBan tA9DmuiERixquv3TcIAutS5D0iMyWlziKAg4bLSOGCf8uimYhJlJertfrjvlXfrXhdGetqkc ZDEvAwOvQ1ngKfV//X/Kt0/ALzY3bW/C5UrQfBXVSPDh65fP/5n0rX80RYFTRRub69wDNz89 KnINar8MkC5LZucm8zr34V9y+a80CEtxCffD8zvSF6rDOaDdBrC9hTW05hVGqgTcVW9oP1Qg ja1BMhRhMRrS3trFp8Lq2RKkE6ToD1LTo7JNjvntNiKqYz7IFXFEurBaBgRWX1I3KEmhznV7 6UIyrkSX1D29NHrOCm1fr5VtbTm8vkTzt6yKvCDw/276qLG2ambR6FlaVIP2Kly6vH5Y/uvX z98f3uAg6n9eP3/9/eHL67+dWu6lLJ+1dCZ7F7ZhgEr89O3l91/hqR37EthJjKI1d+I0oMwn Ts3F9JoDFmF5c7nSF1TStkQ/tJVhesg5tCNo2kjhNIzJWbTIFYLiwORmLEsO7bLiCPYZmHss O8sB1IwfDyylk5PFKLsenE7URX16HtvMNICCcEflxCorwQsmup63kvU1a7WFtr/at690kYnH sTk/d2NXZuSjwPvAKJeJKWNoPlUTOswDrO9JItdWlOw3ypAsfsrKUT1y6agyFwfxujPYzHFs l5yzxUUCGJ5Mp4UPUvTxu3sQCy7gJGepp21xavpiToEuq814NTRqL2tvmgdYZIQOMO8VSGsY bcn4KZCJntPCdO2zQLIq6tt4qdKsbS+kY5SiyG0LalW/dZkpa8z1TNLI2AzZijSjHU5j6lWT pif1L8r0ZNrLrdhIR98EJ/kji6/J65pJmoe/aTOS5Gszm4/8Xf748q9Pv/zx7QWuWuA6kwmN QlnorZ/5l1KZpuzvv39++c9D9uWXT19ef5RPmlgfITHZRqaFoEGgylBS4DFrq6zQCRk+ve4U wky2qi/XTBgVPwFy4J9E8jwm/WC7+ZvDaPPCiIXlf5WHip9Dni5LJlNNSQl+xh8/8+Dss8hP Z0uCHvj+ej1RmXV9LImM1Laoy3Ta9gkZQjpAtAlD5dO24qLLiWKgImVirnm6uKTLJhMEZQty +Pbp4y90vE6RrClnws9pyRP6xTytwf3xz5/s+X4Niix+DTxvGhbHdvkGoexAa/6ru0QUjgpB Vr9KLkzmrSu6GLxqFyP5MKYcm6QVT6Q3UlMmY8/p6+2GqqpdMYtr2jFwezpw6KNcJG2Z5rqk BQYEVQfKkzgFSGOEKlJmrPSrFgaXDeCngeRzqJMzCQNPUMGdPSp3GyEFyroC0ZKkefny+pl0 KBVwFId+fPbkAnLwtjvBJCV1MzA4bjuphBQZG6C7dON7z5PKTBk10Vj1YRTtt1zQQ52N5xze FQl2+9QVor/6nn+7SMlRsKnI5h+TkmPsqtQ4PRBbmazIUzE+pmHU+0irX0Ics3zIq/FRlkkq pMFBoO0rM9izqE7j8Vku1YJNmgdbEXrsN+Zw3+VR/rNHTniZAPk+jv2EDSI7eyHV2Mbb7d8n bMO9S/Ox6GVpyszDx0hrmOmVtr7zIp7Pq9MknGUleftd6m3Yis9ECkUu+keZ0jn0N9vbD8LJ Ip1TP0Yry7XBprsGRbr3NmzJCkkevDB64psD6NMm2rFNCs7dqyL2NvG5QHsRa4j6qu5wqL7s swUwgmy3u4BtAiPM3vPZzqyu2w9jWYijF+1uWcSWpy7yMhtG0P3kn9VF9siaDdfmXaZuBdc9 PB63Z4tVdyn8X/boPoji3RiFPTts5H8FeC9Mxut18L2jF24qvh853hzhgz6n4HOkLbc7f89+ rREktqTpFKSuDvXYgkusNGRDLBddtqm/TX8QJAvPgu1HRpBt+M4bPLZDoVDlj/KCINipvDuY pUtYweJYeFLB7MBB1dFj69MMLcT94tVHmQofJMsf63ET3q5H/8QGUA8UFE+yX7V+NzjKogN1 Xri77tLbDwJtwt4vMkegvG/BtebY9bvdXwnCN50ZJN5f2TBg4C6SYRNsxGNzL0S0jcQjOzX1 Kdjny+566858h+0buGPgBXEvBzD7OVOITVj2mXCHaE4+L7L69lI8T/Pzbrw9DSdWPFzzLq+r eoDxt8cndUsYKYCaTPaXoWm8KEqCHdp4InoHUmWoh5B16p8ZpLqse2Osyi21SEbhBjWurrIx T6ptQCV8cpYNDo+KwuKfzvnzZCch8J5LFeQCrspLyVT08d4PDi5yv6WZYu4ykEkdFJeRXggC fRIWcvJjpE7ep80AT6CdsvEQR941HI9kiq1uhWPPC3Ymmr4KN1urX8C6fmy6eGurIgtFZ+Au h3GTx+hBPE3ke+z2bwKDcENB9T451xv6cy6brj8n21BWi+8FJGpfd+f8IKZ7B9vgLns/7u4u G99jTXM4xcqJ79hs6MCDC3TVNpItEm/tCE3qBx320werinndJKphi67/UHaH3D0hNqVbEGa0 bUAShe0ry7SfEPTZa0pb24VqbJbntImjzfYONb7bBT7dfuSWSxM4ivOBK8xM50F3j7bKiZeV lhCzJRCqgZLuBMI1ZgHbsrBU4TY2IER/zWywSA82aFdDDq6X8oQFYb+cLBRDsgi5JhsLcNRM 1lfiml9ZUI7QrC0FWamWQ2cBR/JVok2aEyllkretXEY+ZSUhTqUfXEJT0MArdsCchziMdqlN wLopMHu4SYQbnyc25gCdiTKX83H41NtMmzUCbUTPhNQjIi4p0C/CiMwnTeHTESd7hqXzSu3f nqmPbU23H7Sni/F0JH2yTFIqZPO0Iy31/rl6gseimu5CGux0IV1I7y+SFFOaa+sHRISWVOG4 5gToxFXQCSEb9Bst8IRZ1vFLFbnwgcce1PMJT5e8fexoDYIfqypVnna0pfG3l99eH/75x7/+ 9frtIaXb78fDmJSpXGoZZTke9Fs9zyZk/D2do6hTFRQrNTeK5e9DXfdgp8C8DwP5HuGGblG0 yHv/RCR18yzzEBYhe8gpOxS5HaXNrmOTD1kBDyqMh+cef1L33PHZAcFmBwSfnWyiLD9VY1al uajIN/fnFV+eVAJG/qMJ810lM4TMppfKgh2IfAXycQT1nh3lmlR50sQfcD0JdBvgCMePCTwN hxNgtqwhqAw3nUPh4LBDBnUih/yJ7Wa/vnz7qH2j0i1eaCslAlGCTRnQ37KtjjXMK5OGipu7 aDp8dVP1DPw7eZYrdXyubaJWbxUt/p3oh1twGKkSyrbpScZdj5ELdHqEnA4Z/Q3uMX7emF99 bXE11HLpASfCuLI6P1WPBOOCgcsUPIRhT18wEL7jtsLED8NK8L2jza/CAqy0FWinrGA+3Rxd R1I9VjbDwEBy1pLKRyWXGyz53PX50yXjuBMH0qLP6Yhrhoc4PTZcIPvrNeyoQE3alSP6ZzSj LJAjIdE/099jYgWBZ5SyVmpO6Kx15mhvenbk1YXkpzWM6My2QFbtTLBIEtJ1kRsl/XsMyThW mLmiOB7wLKt/SwkCAh+c/SXHzmLhpe2ykdPpAfaicTVWWS2Ff47L/PjcYhkbInVgAphvUjCt gWtdp3XtY6yX601cy71cPWZE6CA3l0pk4jiJaEs6q0+YVBSE1DauSqdd5h9EJpeur0t+CrqV MXqWRUE9rNdbOjE1g0AmkxDUpw15lhONrP4MOiaunr4kExoAum5JhwkT+ns6pm2z063NqSpQ oidnFNIlF9KQ6BQMBNNBaohDv4nIB5zqIj3m5mkwTMkiJhIaDrIuAidZZrApV5dESB1kDyCx J0z5hD2Rapo52rsObS3S7pxlPdFE9KaEQ8HowHh1R2pn55OZCZzQ2chsQsRoe5qvLmCz063n 7WtM9Q5WzkVCGjyKYMtOwh1dMRN4kU3Khbx9kisW0TtzMLevESNnhcRB6UUm8SE3hdgsISwq clM63S51MWgnDDFyTI9H8NKawTPzjz97fMpFljWjOPYyFHyYHDddtrirhnDHg97lVFYBk4nA /NAaUu90oqC4pDKxuhHhluspcwC6mWQHsDePljDJvHs5pleuAlbeUatrgOWpSibUdBzLdoX5 GK45yxmk6czDumWH5Yf1N6cKzjOxX7EZYd+YXEh0yALoskt+vppLUaDUUm69K8qtDlWjH14+ /PfnT7/8+vbwvx6kZJ6fxLQMHeGsTj9jpx9OXnMDptgcPS/YBL15KqGIsgvi8HQ0ZxKF99cw 8p6uGNVbHYMNoh0TAPu0DjYlxq6nU7AJA7HB8OyWC6Oi7MLt/ngyzeWmAstZ4/FIP0Rvz2Cs BveVQWTU/KJNOepq5bXzQzwXruxjnwbmTY6VgdvBIcs0t5KDU7H3zFt6mDHvkKwMmDTszS2n lVIe226F6YB0JekT6sbnpk0UmY2IqBg9YkioHUvFcVPKWGxmTXKMvC1fS0L0gSNJuGIdemxr KmrPMk0cRWwpJLMzb5AZ5YOdm5bNqHt8jv0N3yp9022jwLxhZXxWF+7MrbeVwU8YG8W7yvbY FQ3HHdKt7/H5tMmQVBVHtXIFNXZserq7LNLoBzJnji9lWsd49+P3KybJP9mhf/n+9fPrw8dp y3ty3GbJNG0HLn90NTKnMWFQIS5l1f0cezzf1rfu52AxPDxKvVqqJMcj3LKjKTOkFBG9Xrnk pWif74dVVm7IeJpPcdon6sVjVmuPkasR/f26WcRbfTJ6DfwalaHGiD3nG4RsLdMkxGCS4tIH AbqvaxnUz9G6+lIZokX9HOuOvuyA8RHemClEbsi/DqUiw/Z5ac6pADVJaQFjVqQ2mGfJ3nRc Anhaiqw6wVLKSud8S7MGQ132ZE0GgLfiVuamvgcgLFaV0/T6eATDdsy+Qz76Z2R6EBHdAeh0 HYHNPQaVhShQ9qe6QHinQ34tQzI1e24Z0PVgsCqQGGBlmsolQ4CqbXrQXK698PvXKnO52B+P JCXZ3Q91l1k7AZjLq57UIVljLNAcyf7uob1Y2zqq9fpilIvuPCVD1Wipd9PLyEzsaymFHq06 SBJNuVOXuoBr9JbpaSChHKHtFoYYU4stltJWAOilY3ZF+xMm54ph9T2g5CLZjlM2l43njxfR kizqpgixuxsThQRJFQ52aJHsd9QiQbUx9U6qQLv65KqhJkOa/4i+EVcKdea5va6DNhfFePG3 kWmouNYC6W1yCJSiCoYN81FNfQM/DeKa3SWXlvVwPyblF6kfx3uC9Xk+NBymzg6I8BOXOPY9 GwsYLKTYLcDAoUcXsRdIXRVKippKwkR4vqnRK0w9yEM6z/B8yiqmUymcxO82QexbGHqKe8XG KrvJtXZDuSgKI3KKr0f2cCRlS0VbCFpbUvRaWCGe7YA69oaJveFiE1DO7oIgOQGy5FyHRGjl VZqfag6j36vR9B0fduADEzirOj/ceRxImulYxnQsKWh+PwmOLol4Ouu200ZbX7/81xvcOP3l 9Q2uFr58/CjX0J8+v/306cvDvz59+w0Ov/SVVIg26VKGo8MpPTJCpBLg72jNg5/rIh48HiUp PNbtyUd+YlSL1oXVeIMlTasyiMgIaZLhTGaRNm/6PKXKSpmFgQXttwwUkXDXXMQBHTETyEkR tY1ad6T3XIcgIAk/l0c9ulWLndOf1M0o2gaCNrJYz0mytLNZVfE2zGh2ALeZBrh0QCs7ZFys lVM18LNPA6j31qyHlWdW++NvM3g98NFF03dxMdvlp1KwHzq9B0AH/0rhnTbM0aNfwtZVNgiq Rxi8lOF0AsEs7YSUteWvEUI5E3JXCH6zkHQWm/jRBLv0Jb1b3OWF1KDGrpfNhlzHLR3XLleb 2dnKD7zTL0qwFuUqOBvo+4DLd0A/kvOpLOH7zHD5vgghlSXXy+ExmIHRuDqqrot+FyaB6QbE ROVitYU3Bg95D09t/bwBtwdmQPTw7ARQuzgEw+3L5aEre1d1DnsRPp0j1Mu/IhdPDnjxNE+T 6vwgKGx8Cx7qbficHwVdDx6SFNsyzIHBdmdrw02dsuCZgXvZK/CBzcxchdRHiXCGMt+scs+o 3d6ptbatB9OkV/WkDp80LynWyMJJVUR2qA+OvOH1buR5BLG96BJROsiy7i82ZbeDXOAlVExc h0YqnBkpf5Oq3pYcSfevEwvQOvmBikZg5tnozq4CBJt3BmxmvnnvZsbHS5X3I770v5TMWsFp cBSDskB1k12T5va3GxeXGSJ5P7Y9uOAFO6UzDqM3xq3qW2BZ4U4KPfmBqa5zxpLUvUSBZhLe +5oV5f4UePqNAd+VhmT3Hl29mUkM0Q9SUOcJqbtOSjo7rSTbfGX+2NZqm6QnArRMzs0cT/5I HKxq9364x7Z06ZaUQRxG7kIlz6eKjg4ZaRuqY+9uvJ3zrrekeNbsIYDVZdJMiptK2TBauRmc HmjTY9/J9MwD6PTHb6+v3z+8fH59SJrL4jJwcnKyBp1eSGSi/F9YDe3UdhXcMG0Z2QBMJ5hR CET5xNSWSusiW35wpNY5UnMMWaAydxHy5JjTvZw5lvuThuRKN6jWogdn2oFmsm3K7mRTyho9 Ke3xOJN65v9B7Ds01OeFLkPLuXORTjJtXpOW//R/lsPDP7++fPvIdQBILOviMIj5AnSnvogs DWBh3S0n1AASLd0lND6M6yi2Tb7JzDW1+gu+N0JQpcnhes63ATxqTQffu/eb3cbjxcBj3j7e 6pqZQE0GrnGLVIQ7b0yp3qmKzjbvSZUqr9xcTdW6mVyuQDhDqKZxJq5Zd/JSrsHNqFop261c tI2pYEaUVsU77WmnyK506aaVjCafApb4wW6cymOWlQfBKAxzXHdU8GsyHsFGPS2e4TLYaaxE mTEySoc/pDc14Ufe3WTnYLvd/WBg8HTLClcZy/5xPPTJtVuc6AjotuZoFb99/vrLpw8Pv39+ eZO/f/uOB6p+rk7kRFWc4OGkrJadXJumrYvs63tkWoLNuWw16wQAB1KdxFZaUSDaExFpdcSV 1UdrtiAxQkBfvpcC8O7spa7CUZDjeOnzgh4NaVYtz0/Fhf3k0/CDYp/8QMi6F8wJAAoAkpCb knSgfq/tk1ZXPD/uVyiroePXBYpgBf+0umZjgSmGjRYNGJ4kzcVF8dJec7atDObz5in2tkwF aVoA7W9ddJfgZ6tmtuvZLKfUxu7g+HjL+G4h067Z/pCla9uVE8d7lBTNTAWutDqXYGThFIJ2 /5Vq5aDSdy34mJ0zpqTulIrpcJ1ckNCNW9UUaRmbVzQXvMRe9hfc0aS2Hx3K8CuAhbWkBGId etDCwyMZsbe/U7BpAcoEeJS6WTzdzGR2T6cw4X4/ntqLZbAw14t2QECIySuBvbSf3RUwnzVR bG0t8cr0URlss6OLBNrv6Wmkal/R9k8/iOyodSNhfteia7LnzjpN0HsTh6wt65bRQg5ygmc+ uahvheBqXN+qgrsiTAGq+majddrWOZOSaKtUFExp58roy0B+b2TtUpthhNSOOnd1T6HKHPzV 3Eo/9hfn1fz6on398vr95Tuw3+1VRXfeyEUAM/7BJROvvzsTt9Kuj3e0TWDBWt0yPDFIngA9 1c24E6y5LijxyWFbK7sUN1RUCPkJNZhIW6brZjA5ASaZTmiEncmnS0bVjjloVTMaBSHvZ9b1 bZ70ozjkY3LO2Hlj+bh7xZ0zUydJd+pHWa3ICZeRzGug2VAmbxyfpoPpnGWgsam73LZ2waGz ShyKbDbYl6qa/N6/EH65h9q3lsKLI0BBjgWsEPk9zjVkm/Uir+YjjT4b+NCODr10jPFOz1C3 4u+OGgjhykMvdH4QXx8rSVV7zBp3U+lgopfq0hT2XjiXzgQh5GJRtgG3B6TYeVXG02XWtjJ7 y7yOFLNxRBdNXcD59qOjuk9S8le5m5++rnIkn4iqqit39KQ+HrPsHl9m/Y9yzxNXSyZ3kn4H t+DbH6Xdnxxp9/npXuyseDzLmd8dQBTpvfjTgaOzz+izRbdIBl4UN/HcLfJB6l2F7w5d5JVc 3osuw7fZ7SpRmtl0VvXDKEOfVR2zp9g13IYaoOCFgBMb/WKM0PXlpw/fvqqHob99/QLmrh3c GHiQ4abXVy2T5DWZEh4n4FR6TfH6oI7F7b2vdHrsUnT2/P+hnHo35fPnf3/6Ag91WtoE+ZBL tck5qzv9dvt9gle+L1Xk/SDAhjuwUjCnv6oMRaq6KVwjLAV2tnvnWy1lNju1TBdScOCpwz83 K/VAN8k29kw6tHJFhzLb84XZIZ3ZOyn7d+MCbR86Idqdth9vYfJ9vJd1WgrnZ03b/PKv5uzY 89bh1CKP0dI1CyduUXiHRS8yU3a/owZYKyuVurIrrBNx4wOKJNpSO5aVdq9f1+/auXqTuZVk PDJvKvz9659S3c+/fH/79gc8DuxaV/RSX5ANwS/rwBnUPfKyktpFv5VpKnKzWMxxSSqueSWX F4Ja9JhkmdylrwnXkeC2nqMHK6pMDlyiE6e3Jxy1qw9/Hv796e3Xv1zTkG449rdi41Gr2CVb IfVOGWLrcV1aheD39pRDqjG7Iqn/lzsFTe1S5c05t8zODWYU1CgHsUXqM/P7QjdDx4yLhZYK sWCnDhloyOUMP/CCZ+K05HDsshvhHFJ16I/NSfA5KO9h8Hez3kSCctruUZadhqLQn8KkZl9w W/cn8veWnS4QN6niXw5MWpIQlk2cSgp873mu6nQZzSsu9eOQ2UCU+D7kCq1w2yrM4NDFdpPj drVEugtDrh+JVFy4c4SZ88Md071mxlWIiXUUX7HMVKGYHTUvW5nByWzvMHfKCKy7jDtqxm4y 91KN76W65yaimbkfz53nzvMcrbTzfebofGbGM7PRt5Cu7K4xO84UwVfZNeZUAznIfJ9eWFDE 48an9j8zzn7O42ZDL5xNeBQym9aAU7vVCd9Si8sZ33BfBjhX8RKnxvUaj8KYkwKPUcSWH9Se gCuQSx86pEHMxjj0Y5cw00zSJIKRdMmT5+3DK9P+SVvLxWfiEnRJF0YFVzJNMCXTBNMammCa TxNMPcLdk4JrEEVETItMBN/VNelMzlUATrQBwX/jJtiyn7gJ6J2NBXd8x+7OZ+wcIgm4YWC6 3kQ4Uwx9Tu8CghsoCt+z+K7w+e/fFfTSx0LwnUISsYvg1gaaYJs3Cgv284bA27D9SxK7gJFk k+2OY7AAG0SHe/T2buSdky2YTpgKqdn+v5RdSXPcuJL+KxXv1O/wooukWMtM9AFcqootbibA WnypUNvVtqLlZSQ5pvvfDxLgAiQScsxFy/eBWBJAYs8kiqVwX3iibSicqE2JR5QQlOUEombo 5cRgJ4YsVc7XAdWNJB5S7Q6ujlEH7L4rZRqnG/3Akd1oL6oVNfQdMka9/TAo6mKe6i2UDlVO TsBBCaX8Cs7gEJBYQ5fV3faOWrmXTXqo2Z51V3zdF9gKHkwQ+dOr7Q0hPv86fGCIRqCYKF77 EnJeqU1MTE0RFLMipliKsKx0IIY699eMLzZyEjsydCOaWJ4RMy/NeuVH3SjQ5aUIuLMQrK4n sN7iOZg3w8ArAcGIbfE2rYIVNRUGYo1fvxoELQFFbgktMRBvfkX3PiA31DWbgfBHCaQvymi5 JJq4Iih5D4Q3LUV605ISJjrAyPgjVawv1jhYhnSscRD+7SW8qSmSTAxueFD6tCvlZJRoOhKP 7qgu34lwTfRqCVPzZglvqVRFsKTWugqn7rAonLp8AwTRwCVu+de1cDpDEqf7PHBwa4vm4jgg xQG4pypEvKKGPMDJqvDs+Xov/MDFVE88MSmreEX1F4UT+lPhnnRXpGzjFTVT9u35DjdmvbLb EOOuxul+MXCe+ltTV9MV7P2CbrkSfuMLSaXMz5PilPAbX7wRo//OPS/khJU6SYOHs+SO2sjQ sp3Y6aTJCaAcSTD5E07Lif3JIYTzSkFxngtavArJ7g1ETE2IgVhROzADQbe2kaSLzqu7mJrH cMHISTbg5JVDweKQ6Jdwg367XlGXGuGkgjxfYzyMqfWwIlYeYu2Y8xgJqttKIl5Suh6IdUAU XBHYrsNArO6oNaSQC5U7Sq+LHdtu1hRRHqNwyYqU2loxSLouzQBkS5gDUAUfySjAFgFs2jF4 4tA/yZ4K8nYGqb1qg/xZAp7Zlg4gF0TU/tDwdZaeA/JskkcsDNfU0SHXmxgehtoA9B4oec+R +owFEbUkVcQdkbgiqD16OQvfRtTWhiKoqE5lEFJrkFO1XFIL/VMVhPHymh+JIeZUuS+pBzyk 8Tjw4oQq8N0ABSOIlN6S+B0d/yb2xBNTvVPhRP347v/CKTc1BANOrQQVTowJ1PvUCffEQ21h qFN3Tz6pNT3glGJVOKFeAKfmPBLfUAtsjdMdfeDIPq7uB9D5Iu8NUG+AR5zqiIBTm0yAU/NP hdPy3lJDGeDUVoTCPflc0+1CrvE9uCf/1F6LuivtKdfWk8+tJ13qzrXCPfmhnkIonG7XW2qR dqq2S2pXAXC6XNs1NSnz3SxROFVezjYbah7xvpRamWop79Ux+HbVYmM6QJbV3Sb2bBCtqfWQ IqiFjNrJoVYsVRpEa6rJVGW4CijdVolVRK3RFE4lDTiVV4WDbfkM23EYaHJpV7N+E1GLDiBi qvPWlBm0iaDkrgmi7JogEhctW8llOKMqUb23ki0Dnkh2xCmZDnD8Cd+d3+bFzM8GRq0rD9Z3 euXie+hn0Dbx9mUv7Tl6xgwbG9okVJG5txMP5rsP+c81UbdBLsoyT70XB4vtmLFo7J1vZ+NA +trn99uHx4cnlbBz8wPCsztwaWvHIVtkrzzNYrgz13kTdN3tENpaHqEnqOgQyE37CgrpwfQP kkZe3psPODUmmtZJNyn2SV47cHoA77kYK+R/GGw6znAm06bfM4TJdsbKEn3ddk1W3OcXVCRs 40lhbRiYWlVhsuSiAKvFydLqxYq8IEsrAMqmsG9q8Eo84zPmiCGvuIuVrMZIbr3k1FiDgPey nDa0E+FqiZtilRQdbp+7DsW+L5uuaHBLODS2JTH9v1OAfdPsZT89sMoy8QrUsTiy0rQko8KL 1SZCAWVZiNZ+f0FNuE/ByWNqgydWWs9XdML5Sbl2RklfOmSEFdAiZRlKyHIdAsDvLOlQCxKn oj7gurvPa15IhYHTKFNlGQyBeYaBujmiioYSu/phRK+m6USLkP+0hlQm3Kw+ALu+Ssq8ZVno UHs5D3XA0yEHX2u4FSifOZVsQznGS3B2gsHLrmQclanLdddBYQu4kNHsBILhnU6Hu0DVl6Ig WlItCgx0puEygJrObu2gT1gNbiBl7zAqygAdKbR5LWVQC4wKVl5qpLhbqf4sp0wGeDU975k4 4Z7JpL3x2VYNTSbF2raVCkk5jU7xFyW7cGxw3ABdaYAN8zOuZBk37m5dk6YMFUkOA059OK9o FWgNIspVNc6I8hsJrz4QLHJWOZBs3Tk81kREX7cl1pBdhXUbuIVn3BxsJsjNFbyx/b252PGa qPOJHJ2QepCqj+dYj4CP4X2Fsa7nAluTNlEntR5mOtfWdP6l4HD3Pu9QPk7MGbNORVE1WJGe C9lDbAgis2UwIk6O3l8ymF8iFcGl0gVnL31C4tqr1fAfmuyULarSSk4MwjAwZ7DUBE7N7Hqe 0NNJbc3P6YoGMITQj1qnlHCEKpUiTOlU4H6xUlyGkGYMxuVMWfiZoscx4Y8GEwg61a+vt6dF wQ+etPULNn4YyjmnQX6nL8ZX2YLvNMFxhGAGTpI4OvKbyUgmURYQbHNIC9urpi145wGusuSI Xq0pI4vgNMEaKJRZx7ItbKt9+vu6Rs41lOnJDsZixq+H1K5+O5j1Klp9V9dyIIGHvGA/WnkK mJYw1ePLh9vT08PX27cfL6rRDDbH7BY4GCAFH1C84Ki4OxktON5SCtnSdupTj21+JV2xdwA1 8+5TUTrpAJnBzR2oi/Ngy8jqqWOonWnOYpA+V+LfS90kAbfOmFwjyQWMHHXBght4og5NWtfn 3FW/vbyCv4vX529PT5QbK1WNq/V5uXRq63qGNkWjWbK3rphOhFOpIyqFXufWCdTMOhZX5tSl cBMCr0zfBTN6zJOewAcLAAacA5x0aeVET4I5KQmFduD5V1buVQiCFQIaM5drQepbR1gK3fGS Tv1at2m1Ns8+LBbWM7WHk+2FFIHiBJULYMA8I0GZk9gJzM+XuuEEUR1tMK05+HRVpCddukE0 5z4MlofWrYiCt0GwOtNEtApdYid7Hzyxcwg5eYvuwsAlGrIJNG8IuPEKeGaiNLR8wlls2cLp 3dnDupUzUeohlYcbXoR5WKdFzlnF6ruhmkLjawpjrTdOrTdv13pPyr0HE9cOystNQFTdBMv2 0FBUijLbbdhqFW/XblSDEoO/D+74ptJIUtMw44g64gMQbDQgaxVOIqY2117rFunTw8uLu6+m RocUiU/5eclRyzxlKJSopq27Wk5f/2uhZCMauTbNFx9v3+Xk42UBFj9TXiz++PG6SMp7GKGv PFt8efhntAv68PTybfHHbfH1dvt4+/jfi5fbzYrpcHv6rp7Zffn2fFs8fv3zm537IRyqIg1i 8x8m5RiAHwA1WLaVJz4m2I4lNLmTKxhrcm+SBc+s01OTk38zQVM8y7rl1s+ZB10m93tftfzQ eGJlJeszRnNNnaONAZO9BwOSNDVs/Ekdw1KPhGQbvfbJyrKIpW2JW022+PLw6fHrp8G/GWqt VZZusCDV3odVmRItWmSrTGNHSjfMuHIaw3/bEGQtl06y1wc2dWjQVA6C96ZZZI0RTTHNau6Z ZAPjxKzgiICue5btcyqwL5IrHl40ajmJV5IVffSb4R53xFS8potcN4TOE+FGdwqR9XKO21me 3mbOFVelVGCmLObaySnizQzBj7czpKbzRoZUa2wHe4SL/dOP26J8+Md0UzJ9JuSP1RIPyTpG 3nIC7s+x04bVD9iA1w1Zr2CUBq+YVH4fb3PKKqxcQsnOam7tqwRPaeQiai2GxaaIN8WmQrwp NhXiJ2LT6wd3KTt931R4WaBgakqg88ywUBUMBxpgq5+gZmOVBAnWpNQZGsHhzqPAd46WV7Ds PJvKLUhIyD105K7ktn/4+On2+mv24+HpP8/gbRCqffF8+58fj+AwBxqDDjK9P39VY+ft68Mf T7ePw9NpOyG5qi3aQ96x0l+Foa8r6hjw7Et/4XZQhTt+3yYGDFHdS13NeQ67kTu3DkcP2ZDn JitSpKIORVtkOaPRK9a5M0PowJFyyjYxFV5mT4yjJCfGcXdiscjOybjWWK+WJEivTOClsi6p VdXTN7Koqh69fXoMqbu1E5YI6XRvaIeq9ZHTyZ5z6xammgAox20U5jr7NDhSngNHddmBYoVc vCc+sruPAvNevMHh81szmwfrPaPBnA6FyA+5M4PTLLymgVPqvMzdYX6Mu5XLyjNNDZOqakPS edXmeH6rmZ3IwG0OXrpo8lhYO7wGU7Sm9xaToMPnshF5yzWSzmRjzOMmCM3XbTYVR7RI9nIK 6qmkoj3ReN+TOIwYLavBF8lbPM2VnC7VfZMUsnmmtEyqVFx7X6krOPShmYavPb1Kc0EMtta9 VQFhNnee78+997uaHSuPANoyjJYRSTWiWG1iusm+S1lPV+w7qWdgd5nu7m3abs54tTNwlt1h REixZBneSZt0SN51DGydldaVBTPIpUoaWnN5WnV6SfLOdjZraouTR5xNK5ytuJGq6qLG03vj s9Tz3RmOcuR0ms5IwQ+JM1saS837wFmtDrUk6Lbbt9l6s1uuI/qzM60/xlnENK7Ye/bkAJNX xQrlQUIhUuks64Xb0I4c68sy3zfCvnOgYDz4jpo4vazTFV6EXeCkGzXcIkPH/AAqtWxfZVGZ hTtHmRxwS9OxgEKv1a647hgX6QE8faECFVz+Ou6R+ipR3uXMq07zY5F0TGDFXzQn1snpFoJt U6BKxgeeazdI111xFj1aWg9OqnZIA19kOLz5/F5J4ozqEPbD5e8wDs5424sXKfwRxVjfjMzd yrwhrEQAtgulNPOOKIoUZcOte0Gwg6+otqid1QgTWCfBOTmxS5Ke4ZaZjfU525e5E8W5h02f ymz67ed/Xh4/PDzpdSbd9tuDkelxweMyddPqVNK8MLbSWRVF8Xl06wYhHE5GY+MQDRzXXY/W UZ5gh2Njh5wgPQtNLq5X5HFaGS3RXKo6uudl2iibVS4l0LItXERdZbKHscEugo7AOjv2SNoq MrGjMkyZiZXPwJBrH/Mr2XNKfIZo8zQJsr+q+5QhwY7ba3VfXbVPe26Ecyfac4u7PT9+/3x7 lpKYz/vsBkeeJ4wnIc6Sa9+52LgxjlBrU9z9aKZRlwfPDmu8S3V0YwAswsN+TewJKlR+rs4S UByQcaSmkix1E2NVFsfRysHlqB2G65AEbWdME7FB4+e+uUcaJd+HS7plahtsqAzqcIqoK6a0 2PXoHDIrN97D6tPuNmRzsbVuotxocutioGoy7jHDTk4zriVKfGyuGM1hhMUgcmM5REp8v7s2 CR6GdtfazVHuQu2hcSZfMmDulqZPuBuwq+W4jsFKufWgTi52jgrYXXuWBhQGcxeWXggqdLBj 6uTBcsKusQO+e7OjD4N2V4EFpf/EmR9RslYm0mkaE+NW20Q5tTcxTiWaDFlNUwCituaPcZVP DNVEJtJf11OQnewGV7wAMVivVKm2gUiykdhhQi/pthGDdBqLGStubwZHtiiDF6k1LRp2PL8/ 3z58+/L928vt4+LDt69/Pn768fxA3Oaxr9yNyPVQt+48EOmPQYvaIjVAUpS5wDcbxIFqRgA7 LWjvtmKdnqME+jqF9aEfdzNicJQSmllym83fbAeJaMfDuDxUP4dWRE+oPG0h0x5biWEEprb3 BcOgVCDXCk+d9C1nEqQEMlKpM6lxW/oeLjNpg9cOqst079lUHcJQYtpfT3liueBVMyF2mmVn Dcc/7xjTzPzSmka01L+ym5mn3BNmbohrsBPBOggOGIY3YebWtREDTDoKJ/IdTObMF8HDFy2X s6zNGeOHLOI8CkMnCQ7nbYFl4lUTyrdVW81PikBK4p/vt/+ki+rH0+vj96fb37fnX7Ob8d+C /+/j64fP7tXNoZS9XBMVkcp6HIW4Dv6/seNssafX2/PXh9fbooKjHmfNpzORtVdWCvvSh2bq YwGOumeWyp0nEauVyZXBlZ8Ky+9hVRmNpj11PH93zSmQZ5v1Zu3CaItefnpNwMkXAY1XKKeD d65ckTNzQQeBbSUOSNpdWuWLV5+YVumvPPsVvv75RUb4HK3mAOKZdeFogq4yR7CVz7l12XPm W/yZ1KrNwZajEboUu4oiwH1Ex7i5SWSTaub+JknIaQ5hXQKzqBz+8nDZKa24l+Ut68zt2ZmE V0N1mpOUvuBFUSon9lHbTGbNkYwPnbDNBI/oGjizY+QjQjIi+8qelYK9oJupRA5O95bh6Znb wW9zy3SmqqJMctaTtVi0XYNKNHp0pFDwgOtUrEGZkyBFNWen4w3FRKi2no46A2zjk0KyzlRV by52ckKOmrJz21BF0GLAqVJZA4eT1htF984l9Z3zacQeYbhe4Y7VOtO6/6ZkZ7ddnKjSVDJp e39hhJ0IXP0iY7xwyI3bVAvDva3Du3bllVZM1gFqVscC7Dg5ysi07KT/pzSTRJOyz5EnooHB NzUG+FBE6+0mPVoX3wbuPnJTdepcqU7TMpMqRi+HYhRh7yimHsS2ksMaCjne8nNV9UBYW5oq F319RmHTd84AceCoxYmGH4qEuQkN3txRjxP3VBs753VDjwLWJvWMs2plmrNRXfRUUiGnRwa2 1sorLgprhB4Q+6imun359vwPf3388Jc7aZk+6Wt1AtflvK/MTiG7TuPMBPiEOCn8fCAfU1QK xVwJTMzv6pJgfY3MmebEdtY+3wyTrQWzVpOBdyj2K0L1PiMtGSexK3rhaTBqPZI2palMFZ10 cNRSw3GU1HjpgdX7fHLaLEO4VaI+c10jKJgxEYSmpQ2N1nKuHm8ZhrvCdKymMR6t7mIn5Clc mnY3dM7TamUZiJzRGKPIIrnGuuUyuAtMW4gKz8sgDpeRZbhIv4vpu67g6ggVZ7CsojjC4RUY UiAuigQtm+8TuA2xhAFdBhiFBVSIY1W3+884aNoksqld3/VJTjOdeW1DEVJ4W7ckA4oeYCmK gMo22t5hUQMYO+Vu46WTawnG57PzYmziwoACHTlLcOWmt4mX7udyGYJbkQQts7izGGKc3wGl JAHUKsIfgMmq4AwW9ESPOzc2Z6VAMIDtxKKsYuMCZiwNwju+NC0B6ZycKoR0+b4v7YNd3auy cLN0BCeieItFzDIQPM6sY25GoTXHUda5OCfm479BKRQp/lakbBUv1xgt03gbOK2nYuf1euWI UMNOESRsmx2aOm78NwIbETpqosrrXRgk5txI4fciC1dbXOKCR8GujIItzvNAhE5heBquZVdI SjFtTsx6Wjs/enr8+tcvwb/Vwr3bJ4qX89IfXz/CNoL7tnbxy/yE+d9I0ydw/I3biZxepk4/ lCPC0tG8VXnuclyhPc9xC+PwwPMisE4ShRR87+n3oCCJalpZ5n51NC1fBUunlxato7T5voos m4C6BabgUil26rrcT/vLu6eHl8+Lh68fF+Lb84fPb4ydnbiLl7gvdmITK/NGU4WK58dPn9yv h9eZWEeMjzZFUTmyHblGDvPWQw6LzQp+76EqkXmYg1zDisS6sWjxhPEEi0/b3sOwVBTHQlw8 NKFYp4IMj3Dnp6iP31/hVvPL4lXLdO4M9e31z0fY0xr2Oxe/gOhfH54/3V5xT5hE3LGaF3nt LROrLBv3Ftkyy0SKxUntZ7lcRh+CeSTcByZp2ccPdn5NIepNpyIpSku2LAguci7IihLsP9nH +1JhPPz14ztI6AVukr98v90+fDZcabU5u+9NS7oaGHamLUdkI3OpxUHmpRaWx0+HtTzq2qzy Rutl+6wVnY9Nau6jsjwV5f0brO2oGLMyv1885BvR3ucXf0HLNz60bbQgrr1vei8rzm3nLwic 2v9mm2OgWsD4dSF/1nKBavqEnzGl7cHxg5/UjfKNj83DLoOUa7Asr+Cvlu0L00qJEYhl2dBn f0IT585GuEocUuZn8OavwafnfXJHMsXdsjC3TEowp0sIUxLxz6TcpJ21/Daoo/be3R69IYq2 KRI/c01p+WvSX3KDV+8dyUC8a324oGO1Zg+IoD/pREfXKhByiWxrc8zLaI9mkp1I4XqKDaBV OUCHVDT8QoODgYnf/vX8+mH5LzMAh5t45h6UAfq/QpUAUH3U/UYpcQksHr/Kge7PB+sdJAQs /o+xa2lyG0fSf8Ux5+1tkRQfOsyBBCmJXQLFIigVyxeGx67xOsZ2dZTdsdH76xcJPpQJJClf XNb3JfFG4pVIVO0eYthbSTU43R6eYTJQYbS/lEVfyMuJ0nlznQ4SZhcrkCZnijQJuzsMhOGI NMvC9wW+1nhjivP7HYd3bEiOF4b5AxXE2HXkhOfKC/BqhOK90O3rgr3xYR7PVineP+H3rREX xUwajs8yCSMm9/ZidsL1Qici/nMRkey47BgCO8IkxI6Pgy6mEKEXX9gr+8Q0D8mGCalRoQi4 fJfq5PncFwPBVdfIMJF3GmfyV4s9dQVNiA1X6oYJFplFImEIufXahKsog/PNJMvjTegzxZI9 Bv6DCzt+yudUpSeZKuYDOG0nb+QQZucxYWkm2WywD+u5ekXYsnkHIvKYzquCMNhtUpfYS/qS 3ByS7uxcojQeJlyStDzX2AsZbHymSTdXjXMtV+MB0wqba0LesJwzFkoGzLUiSeY5eV2uq09o GbuFlrRbUDibJcXGlAHgWyZ8gy8owh2vaqKdx2mBHXm19VYnW76uQDtsF5UckzPd2XyP69JS 1PHOyjLzsDBUASz3745kuQp8rvoHvD8+ka0NmrylVrYTbHsCZinAposGZ/n0XvWdpHs+p6I1 HnpMLQAe8q0iSsJ+n8ryxI+CkdmdnE9UCbNjb6AikdhPwrsy21+QSagMFwpbkf52w/UpazeW 4Fyf0jg3LKj2wYvblGvc26Tl6gfwgBumNR4yqlQqGflc1rLHbcJ1nqYOBdc9oQUyvXzY3ebx kJEf9jgZnNpMoL4CYzBTdO+fq0d8kX7CxxdnXaJqu2LeV339/puoL+tdJFVyR5wA32rTsj2Y ifJgH8XNI5eC67YSvKo0zBhg7CwW4P7atEx+6OnubehkRIt6F3CFfm22HoeD8U+jM8/NIIFT qWSammMhOkfTJiEXlLpUEVOK1ln6XBZXJjGNTPOUnNbO7cC2KJprotX/Y2cLquUaFD1gvA0l HrVKmojhDVduqm6d2SGCngXMEcuEjcEyYJpT1DFFr8H+yvRyVV2ZeZ9t0jPjrU9eTbjhUcCu ANo44ibnHTQRRuXEAadxdHVwg6vgK6Rpc4+ctdy68WgIN3usVy/ff7y+rXd+5PIUNt6Z1n4+ 5fsSH8rn8ATq5FvSwex1PGKuxGoCTI1y26lRqp4rAU8CFJXx/gjH+VVxcqwx9cda5FDiYgYM HPlfjIcC8x1NIXF6CtYKDXi2OJAtpbQrLbMisFhTWdo3KTZ8huCgC+A1DWAq9bzOxmj/z5+Y WAbVRe1PQJcWBDmWqqQypTyAFygLHBytaizaOui57lMi/RBYZi9ib0U7Wd/Bo73E4mrCO9sS q+5rywCw7luK6G5CDOM6RZNRZfV+LKcbWIP3cgKcrEIzvWkBou/dGVRSybrJrW8HEwSrtoxq 8jd9WmdUfCC8jVXEumtZgpOhmkmAYHCrSI1KoUEMF9zGCUKfWwXePvRH5UDi0YHArFhnhODG ePwIDaiXB3xn/kaQ9gxptYz9RtQVI+ZDYC9nBwYASGEn0OpiVcveamDTHUkqZRpL0Wcpvoc6 ouhbkTZWYtGVS7vqSzvFoFjIHKU1jdbM0LTiIDu90ANPw+ezEhRfv7x8/8kpQTseasd804GT bpqCzC5717uvCRSu3KKSeDIoan3DxyQO/VsPmNeir85tuX92OFffA6qK0x6SqxzmWBCPVRg1 m8Rmx3c+uLFyMxfRpXM8BIBPAOrLPt+CgnbO3kecKtFUibK0fOG3XvRATJ1E7qOkjz5G4EQU m4GZn7MDko0FN2dTByGFB7M1mAcrcsVoYDNwkTtx//jHbeU3ZrnPTnps27OLQyxSMUtDxFvG d1a2LuR2KRj3YmNUAOpxdkwMjoHIZSFZIsULGABU0YgzcesH4YqSuZalCTC2sUSbC7k6qCG5 j/CLSCY9e5Sv6x7u8+uk7XMKWiLVudTt6GKhRJtNiB7usD6YYd3/Oxt2fLYaOJVZuiCpZ/yn rsjT7gDatCnI/U0qmcq8O2TFupCe3+xPRaf/x4lJckwyQ9Mxzq0LNY999mwedJJppdspUnsw KdNzyfJKjD7sN5eG36acyNHUiMuiunDCfADW3cSRuuZ16sqTs9kRzNLT6Yx1xoiXVY2PpKe0 SSYj0hjAS3hCouidCfMoZKaHugcW+eisAEnQxOpfcIfIRXpy23ZGLYvici+u2HYczmNpDDNk BVjbKTEOLcpzi2+rD2BDTrCv1NXcIGJVo8FofAYCP7k2dlUkRyPIpM0MvKMT/1tTGL3gf3x7 /fH675/vjn//+fL22/Xd579efvxEF97mkeee6BTnoSmeiTeQEegLbByox6ACXx8eftuD54wO 9j9mIC3fF/1D9k9/s01WxGTaYcmNJSpLJdwuOJLZGZ/IjyCda4yg41VrxJXSGqGqHbxU6WKs tTiRJ0URjPU1hiMWxgclNzjxnNIfYDaQBD9gPcMy4JIC72rrwizP/mYDOVwQqIUfROt8FLC8 1gzEqy+G3UzlqWBR5UXSLV6NbxI2VvMFh3JpAeEFPNpyyWn9ZMOkRsNMGzCwW/AGDnk4ZmFs fD7BUi/7UrcJ708h02JSGIvLs+f3bvsAriybc88UW2nuP/qbB+FQIupg//TsELIWEdfc8kfP zxy40oxet/le6NbCyLlRGEIycU+EF7maQHOnNKsF22p0J0ndTzSap2wHlFzsGr5wBQJXPh4D B1chqwnKRVWT+GFI5wpz2ep/ntJWHPOzq4YNm0LAHjn9dOmQ6QqYZloIpiOu1mc66txWfKP9 9aTRZ6odOvD8VTpkOi2iOzZpJyjriBg0UC7ugsXvtILmSsNwO49RFjeOiw/2tUuPXP+zObYE Js5tfTeOS+fIRYth9jnT0smQwjZUNKSs8npIWeNLf3FAA5IZSgW8mScWUz6MJ1yUeUtvIE3w c2V2d7wN03YOepZyrJl5kl7EdW7CS1Hbfi3mZD1m57TJfS4JfzR8IT2A4fCFuuCYSsG8tmRG t2VuicldtTkwcvkjyX0liy2XHwlvMTw6sNbbUei7A6PBmcIHnJirITzm8WFc4MqyMhqZazED ww0DTZuHTGdUEaPuJfGGcgtaL6r02MONMKJcnovqMjfTH3K7mbRwhqhMM+tj3WWXWejT2wV+ KD2eM4tHl3m8pMMLnuljzfFmv3Ihk3m74ybFlfkq4jS9xvOLW/EDDG44FyhVHqTbeq/yIeE6 vR6d3U4FQzY/jjOTkIfhL9k2YDTrmlblq32x1haaHgc350tL1sUjZe2OYrQvupR6CyHsGCje TlCtZT5eN6WSPr2N27R6nbPzLzcLf41AoVm/Ry8ivRCyXuLah3KReyooBZEWFNEDa6YQlMSe j/YFGr0eSwqUUPil5xzWWz9Nq6eCuJbOoi3O1eAfj+4qtFGkG9Q38jvSvwdT3vL87sfP8Z2V +aR0eH/w48eXry9vr99efpLz0zQvtb7wsfHbCJlD8dtbhPT7IczvH76+fobnCj59+fzl54ev cC1BR2rHEJPFqv49+EO8hb0WDo5pov/15bdPX95ePsJe+kKcbRzQSA1APU5MYOkLJjn3Ihse Zvjw54ePWuz7x5dfKId4G+GI7n88HISY2PWfgVZ/f//5Py8/vpCgdwmePZvfWxzVYhjDU08v P//39e0/Jud//9/L23+9K7/9+fLJJEywWQl3QYDD/8UQxqb4UzdN/eXL2+e/35kGBQ22FDiC Ik6wNh2BsaosUI3PoMxNdSn8wf7+5cfrV7igebe+fOX5Hmmp976dHwJlOuIU7j7rlYzt15IK 2XWOGhyejkG9v8yLc380TxTz6PBeyQLXnMUDPFxh0/qbOabhlt5/yy78Pfo9/j15J18+ffnw Tv31L/flptvXdJdzguMRn4tlPVz6/WhKleOTlYGBQ8qtDU55Y7+wLJQQ2Isib4gLZOOf+Iq1 8yD+/tykFQv2ucDrDcy8b4JoEy2Q2eX9UnjewicnecLneA7VLH2YXlVUPN9eUU2/f3p7/fIJ n9UeJT2xnETsNmnWI7dYTm3RH3KpV5HdbVjal00BHvgdl3j7p7Z9hk3evj238N6AeZgr2rq8 0LGMdDD7PT6ofl8fUjhHRN2nKtWzAl9VKJ6sb/GNvOF3nx6k50fbhx4fnI1clkdRsMVXQEbi 2GlluskqnohzFg+DBZyR1xO+nYfNTREe4IUEwUMe3y7I44dOEL5NlvDIwWuRa3XrFlCTJkns JkdF+cZP3eA17nk+gxe1ngYx4Rw9b+OmRqnc85MdixNDeYLz4QQBkxzAQwZv4zgInbZm8GR3 dXA9aX4mx/ETflKJv3FL8yK8yHOj1TAxw5/gOtfiMRPOk7mmfMav0UpzqgROOKuiwpN26Rxf GcRoEAvLS+lbEBmUH1RMjDWnUyTbLSuGjf2ROBPNPQlAX2/w01wToXWMuU3pMsSz5wRad99n GO+X3sBznZHHPiampo9KTDA4cXdA92mGOU9NmR+KnLrBn0h6n35CSRnPqXliykWx5UwmvhNI PTHOKF5rzfXUiCMqajAmNK2DGkuNbrD6qx6K0UaOqnLXQ9YwPDkwCQIMELBFSrnFw19XnsAC EZrCHmXZuDMzvvXxkf9RgvsjyIui75frnHUjYzYJm/PphOsYPjTWLqR/POjVNtnDGoGeFsiE kuKfQNpvRpDar52wEc3THk0R4U2HYxlE8YZWmKqleS3bUKij7nONRvCiMUigCnbsYidEF3eN l+5H3Q2L2d4CL/ltE/4RoBmcwKaW6sDIqmNbuzApuAnU1dGeXRhMgEidT4Tp+8SCbWKuGZNC c5i9dzM4GhgT3/ozRS/tTrDlpNfAurrqHBQPMS5BlG2gJovTKa3OHWNkMzh16Y/ntj4Rj6cD jjXB+VQLUksG6M4eHrpvGBE9pteiF9j9gf4B5jNaUxKHE5OgrqKiJspZGOM1K5AZu91LGZbV X19nH3TGkU7aSL34+vfL2wusKD/ppetnbBNYCrKHp8NTdUKXbr8YJA7jqHI+se6NWUrq2VPI ctaFWsTovkl8VyFKCVkuEPUCUYZkvmdR4SJlHVYjZrvIxBuWyaSXJDwlclHEG770gCP3mjGn Bg1bs6y5sXMqOrVQKMCrlOcOhSwrnrL98uLM+7JW5CRPg+3TKdps+YyDGbj+eygq+s3jucHD JUAn5W38JNVd/pSXBzY063YGYk5ncazSQ9qwrH2LGFN4QoHwc1ctfHEVfF1JWfv2nA+3jjz2 ko5v7/uy03Mj64AdSs+4tlcUPD/pWqXH1hMas+jORtMq1bo4K1vVPzW6uDVY+cmR7I1DitPy Ad6Hs6o7a71eiAvUE0/k+K0mQ+gJTux5fX6tXYJMhUawj8hlMIz2h5QcH40UdUyMitZyMTzJ i+dDdVEufmx8F6yUm27qQG4CVUOxRvelrGia54UeqqczoReJa7Dhu4/hd0tUFC1+FS3oKNaX LVXKxFW9MSw1kys032ovGSuMiMW0ZWd46wsN251whtlhS08yWMVgNYM9TsNq+f3zy/cvH9+p V8E8w1dWYNqsE3Bw3bxhzr4xZ3N+mC2T8cqHyQLXeWSmTakkYKhWd7yhHG9bslzemSpxH5xu y9HL3hgkP0Mx+5nty38ggluZYo1YzM+AM2Trxxt+WB4orQ+JAxtXoJSHOxKwNXpH5Fju70gU 7fGORJbXdyT0uHBH4hCsSljHv5S6lwAtcaestMQf9eFOaWkhuT+IPT84TxKrtaYF7tUJiBTV ikgURwsjsKGGMXj9c/CTd0fiIIo7Ems5NQKrZW4krmYL6F48+3vByLIuN+mvCGW/IOT9Skje r4Tk/0pI/mpIMT/6DdSdKtACd6oAJOrVetYSd9qKllhv0oPInSYNmVnrW0ZiVYtE8S5eoe6U lRa4U1Za4l4+QWQ1n/TStUOtq1ojsaqujcRqIWmJpQYF1N0E7NYTkHjBkmpKvGipeoBaT7aR WK0fI7HaggaJlUZgBNarOPHiYIW6E3yy/G0S3FPbRma1KxqJO4UEEvXFbFny81NLaGmCMgul +el+OFW1JnOn1pL7xXq31kBktWMmtqEzpW6tc3l3iUwH0YxxvHUz7EB9+/r6WU9J/xw9AP0Y 5JxY0+4wtAd6MZJEvR7uvL5Qbdrof0Xg6XIka1ZzI/qQK2FBTS2FYAsDaEs4DQM30DR2MZOt Wijwd5MQr1OUVnmH7edmUskcUsYwGkV72Wn9qOcuok82yZaiUjpwqeG0Voou5mc02mDL7HIM ebvBS9IJ5WWTDfbRBuiJRQdZfBSti2lAyUpyRkkJ3tBgx6F2CCcXzQfZXYSvqQB6clEdwlCW TsBDdHY2RmE2d7sdj0ZsEDY8CicWWl9YfAokwY1IjXWKkqEEKFqNxh5eoMI9tFLVHH5YBH0G 1PoIGyVr9GSun4LCZQMy+XFgqT9xwOGIzpHO5ZilZBtS2LTdyJI1JeWgQzoIDOXXXuD2JC1C wB8jpdfVtVW2Y5RuOoZKs+EpPw4xVoWDm6J0ic7EijWLuoXhY9usqVl5HMhKBjY4ZMUJYIDt IOYc2vIzQb+A0z54HRF0H9lqHDxc7IkqewA11glrB/CwH8tJR0NDnyd61qbn6FWCgoUsrtYm YPM+tb+M1c73rCiaJI2DdOuCZJvpBtqxGDDgwJADYzZQJ6UGzVhUsCEUnGyccOCOAXdcoDsu zB1XADuu/HZcARA9jVA2qogNgS3CXcKifL74lKW2rEaiA70ZBqP/UbcXWxScn4j6QC/dz8yh qHygeSpYoC4q01+ZpyxVYW3wT65VIE6tfO29bsKSk23E6h7LTzSVntpfsB28CkS0nd/dGXci Jy6sr+Crh+OGV9z6QPfrNX67RoZ3Pg79aJ3fricuhKfsV/i0kdFqAmE+rky5CbxpPbIap/73 wRXSQooGzl/mtgHLmTor9+W14LC+bsjVItiYNy501FmAPeMKZTd9QuJLXMblE5tsIJTYJVBJ PBGkTG6ozewMDd1BcYzOpbSdhLlsssru8NHKEJ+4EKi89ntPeJuNcqhwU/YpNBUO9+DoeIlo WOoYLcDeEsEEtDVRuPJuziItGXgOnGjYD1g44OEkaDn8yEpfA7cgE3DK4HNws3WzsoMoXRik KYgUXAsXSZ1DU/fZS0BPBwmHPTdw9Bh2XQjbdjV6fFJ1WVE/IjfMcnqFCLrARQR9JRQT1AXi URWyv4zONNEmgHr96+0j9zA0PBlEvPsNSN2cM6pYVCOsE/LJbs56dmg6Drbx0SeqA08eUR3i yRhpWui+bWWz0a3bwsuuhsHKQo1Jf2SjcCpvQU3upHfoSC6ou9FRWfBgw2+Bg1NTG61qIWM3 paMz0r5thU2NXmadL4Y6ybMOYgFthtvmqVax57kF0iknQbotNYVTnpXJU6vrJa0Xoq5L1abi aFlNAKP7GvEzP8KD48BT7TasGp/mp81YBorD+miblS1m5NhoVZ3gpZ4mrrE0ntHIU6RpK8Gd GAnDQJZFl0nxMCuiZiqTp167WYHJSt/UTgmDr0C7HcFIyJfqH7AMp8lTxzGHQnKobC/YC+o4 0zvr0maEW9xMirno2tJJCFyFTVvi9m6q+A571kwCaOWySRgM7xKNIH71a4gc7vPAsyiidUtD teD+FteU0EXjuf1qPojnYR0+8ak04QQ0b7uaOz06Dt3M/unst1p6dP4wLU/ZGe+pwQUngsxe w+TxQtpoqlVPABqhedJtin403zGi8OSBlYCD0YcDgomIBY6ptRwVDTunsAVa4gIHdV7nwgpi 6MlaUNBmLmT+aIuaaYZUB4pCB6CCJgE0SOM3Tv97TW0sxRY9A6Qu9ehiyQx8B7iO9+XjO0O+ qz98fjEPwb1Ts8MqK5K+PrTgOteNfmJg0+IePftvXJEzmkndFcBBze3wXrZomI5h8QQP/q9g D6Y9NufLAe1gn/e95a/PPM++iDnvD02N1vpinLJaaFlDEFeJL6eDSldEakJGp2R93vZZWeW6 FytGKC+VKcbRrV72PGUYJSbYwfzxyUkk4G5uoW1b0NBcra+hVU/YePfz2+vPlz/fXj8ynqT/ v7Vve24cx/n9V1L99G3VXHyP8zAPsiTb6ugWUXbc/aLKJJ5u13QuJ5fdnu+vPwBJSQBIpXtP nardnvgHkOKdAAkCcVbUsQiy1GFNyCzL2wVrX+5gj2FpsHBK26iSZ6POZ01xnu5fvnhKwi3k 9U9t3C4xagxpkP7jDDaXOxg/dJjC71McqmLuBQlZUTcVBu9cIvYtwGradVCxyyN8J9j2Dyzo D3fXp+ej61G7423FcpOgCM/+R/3z8nq8PysezsKvp6d/YVC829NfMCudkOIoa5ZZE8F0SXLV bOO0lKJoT26/0V6nqUeP/3HzTDUM8j09D7UoHp/GgdpRO3hD2hxQh09y+m6lo7AiMGIcv0PM aJ79M05P6U21tGGzv1aGhns9igFESSMElRdF6VDKSeBP4iuaW4JesLgYY5KGPuXqQLWu2s5Z PT/e3N0+3vvr0SpF4tkW5qHDk7M31wjKaGOWS2agt+GMSSTegpjX9Yfy9/Xz8fhyewM7w9Xj c3LlL+3VLglDxx08XhOotLjmCPdasqPb9FWMLsq5gLzZMQ/GZRDgGVcbXLR/xv+Donavw/0V QDlrU4b7iXeU6u60z9PZk3D3E6g/fv8+8BGjW15lG1fhzEtWHU82Ovv4QW/S6en1aD6+ejt9 wyC03crhxgtO6pgGLcafukah58mYpe5W+AYH3Vn+MesL9fMfN54+iSGBZ/mxUh7ffmCrCkqx JcHkqwJmWYGovjq6rugBiN1CmHVEj/nXn/qys8ro/Y76Cq6rdPV28w1mysCcNZIvej5lhzjm gh82cwz+FK0EAXfjhjpHN6haJQJK01BaOJRRZXcCJShX+JTOS+FWBh1URi7oYHwnbfdQjzkD Muo49LJeKisnsmlUppz0cofR6HWYKyXWaKttVLT/vL1E57JzC1ih69yQiiloN+2FnDsgAs/8 zCMfTG/SCLOXd+BzYy+68DMv/Dkv/JlMvOjSn8e5Hw4cOCtW3Pt9xzzz5zHz1mXmLR29RyVo 6M849tab3aUSmF6mdmrJplp70KQwi4yHNLS1OFdm7eWQ0nGHHBwzo9KFhX3ZWxKs5rtUH8KF xa5MxUnkARagKsh4odoAG/sirYNN7EnYMk1/xERWsp0+ZOzEI72oHk7fTg9yy+wms4/axZT+ KRm6/Ta2T7xfV3H3qsT+PNs8AuPDI13LLanZFHt05g21aorcBIom0ghhgqUWj2UCFgmKMaAg poL9ABmDVKsyGEwNCqi5o2Mld/QE1F1tp9uH5LbChI7CziDRHEE7pL7xmnjPIh0zuP12XlBV zstSllTj5SzdlInWCR3MdahvSY0o9P319vHBqltuQxjmJojC5iNziGAJaxVczOiCZnHuxMCC WXAYz+bn5z7CdEqtcXr8/HxBg2dSwnLmJfAgtxaXbx5buM7nzNDG4mb7RNsadDjukKt6eXE+ DRxcZfM5dRptYfTv5G0QIITu63lKrOFf5gIGRIKChi+OIno3YQ7OI1iGQonGVBSyeg4oAmvq vaEeNynoBTWRDPCeLs4SdiXVcECfPW1K+skOkqdReGuNYStEFtke2HD0Ms8MqLjg8Xse1024 5niyJp8zj8eaPM7kOQx9OR0FSwyAFFWsgu0BfVWyOCDmSHWdhRPecu0VRMY6DKfifDbB4EwO DrsCvUZM6DhIMESDiJfQY0248sI8RhbDpfJIqNtrrfHtMvmxS3Sf0bBwOQjXVYIeCjwRHZBq /mRnmX0ah1V/VeHq3rFMKIu6dgNxGNibY1+0dhX9KR+HRPxooQsKHVIW1doC0megAZlri1UW sKef8Hs2cn47aWbSMcgqC2E1aoIwpMZGFJV5EIrIKRktl25OPcr5o4CZpkbBlL5rh4FVRfTB vgEuBEDt+kg8PvM56g9LjwrrIcNQZaCTy4OKLsRP4URFQ9yFyiH8eDkejcm2kIVT5gwa1EcQ h+cOwDNqQfZBBLn1dRYsZzSqLAAX8/m44S5gLCoBWshDCENhzoAF8xurwoA7oVb15XJKX0Ei sArm/998djba9y3MShBJ6eg/H12MqzlDxtQVN/6+YJPofLIQ3j8vxuK34Kcm2fB7ds7TL0bO b9gOQObDsB5BmtIRz8hiIoNosRC/lw0vGnuSjL9F0c+pbIKOTpfn7PfFhNMvZhf8Nw2AGUQX swVLn2iPESB8EdCcpnIMz0VdBLaqYB5NBOVQTkYHF8NlIRIXjdpbAIdDNLwaia/pCJ8cioIL XJk2JUfTXBQnzvdxWpQYWKiOQ+Ysq1XfKDsaTKQVSqMMRoEgO0zmHN0mICGSobo9sDgt7RUO S4NeK0XrpuXyXLZOWobovsIBMTCsAOtwMjsfC4C6h9EAfcpgADIQUG5mYe4RGI/pemCQJQcm 1AcMAlPqZBD91DBHc1lYgqh54MCMPlFE4IIlsW/adWTZxUh0FiGC1I+x7gQ9bz6PZdOauwwV VBwtJ/jckGF5sDtngWTQmIezGLFfDkMt3e9xFIXCzYE5D9RxfJtD4SbSKkEygO8HcIBpAHBt cvypKnhJq3xeL8aiLToFTjaHicrNmXVEbgHpoYzOps25Bd0uULw1TUA3qw6XULTWr0Y8zIYi k8CUZpC29wtHy7EHoyZzLTZTI/rqwMDjyXi6dMDREn3luLxLxWK+W3gx5n74NQwZ0DdNBju/ oJqhwZZT6gjJYoulLJSCucfcrlt0Oo4lmoHme3Daqk7D2ZxO3/o6nY2mI5i1jBOdDU2ddXa/ XozFZNwnIHxr160ct6aUdmb+9y6518+PD69n8cMdvaEB8a6KQWbhl0tuCnu9+vTt9NdJyB/L Kd2ct1k4006hyLVml+r/wRH3mAtKP+mIO/x6vD/dovtsHZCaZlmnsMyUWyvy0o0YCfHnwqGs snixHMnfUr7XGPdoFSoWaioJrvisLDP0fESPccNoKv0SGox9zEDSYS8WO6kSXJI3JZWkVamY 1+PPSy3L9G0qG4uODu5QT4nCeTjeJTYpKBtBvkm7g73t6a6NGo6uuMPH+/vHh767iHJiFFS+ Cwhyr4J2lfPnT4uYqa50ppU7B/3ozo2MIOYznNGMgYMq2y/JWmgNWZWkEbEaoql6BuO2sD/1 dTJmyWpRfD+NjUxBs31qXdibGQWT68asAv6JOR8tmC4xny5G/DcXyOezyZj/ni3EbyZwz+cX k0qEUbaoAKYCGPFyLSazSuoTc+YR0Px2eS4W0on9/Hw+F7+X/PdiLH7PxG/+3fPzES+9VFum PNzDkoW0i8qixmB8BFGzGdXxWumXMYHUOmbqMYqxC7q1Z4vJlP0ODvMxl2rnywkXSNGbFAcu Jkzr1RJI4IorThzv2kQYXE5gX55LeD4/H0vsnB2BWGxBdW6zzZqvk0gL7wz1bhG4e7u//8de xfAZHe2y7FMT75mTQD21zP2Jpg9TzImYXAQoQ3eax1YeViBdzPXz8f+8HR9u/+miRfwvVOEs itTvZZq2cUWMIa42g7x5fXz+PTq9vD6f/nzDaBksQMV8wgJGvJtO51x+vXk5/poC2/HuLH18 fDr7H/juv87+6sr1QspFv7WesTe4GtD92339v827TfeDNmFr3Zd/nh9fbh+fjmcvjrigTx9H fC1DaDz1QAsJTfiieKjU5EIiszmTLTbjhfNbyhoaY+vV+hCoCeiZlK/HeHqCszzIZqq1HnoO mJW76YgW1ALePcekRn/PfhKkeY8MhXLI9WZqXP85s9ftPCNXHG++vX4lu3eLPr+eVTevx7Ps 8eH0yvt6Hc9mbL3VAPVzEBymI6nNIzJhIofvI4RIy2VK9XZ/uju9/uMZftlkStWdaFvTpW6L OhU9BwBgMho43N3usiRKarIibWs1oau4+c271GJ8oNQ7mkwl5+xMFH9PWF85FbQ+DmGtPUEX 3h9vXt6ej/dH0DbeoMGc+ceO6C20cKHzuQNxuT0RcyvxzK3EM7cKtWQuSltEziuL8tPv7LBg Z1n7JgmzGawMIz8qphSlcCEOKDALF3oWsqsqSpB5tQSfPJiqbBGpwxDunest7Z38mmTK9t13 +p1mgD3In4hTtN8c9VhKT1++vvqW748w/pl4EEQ7PKOjoyedsjkDv2GxoWfpZaQumKtTjTAT o0CdTyf0O6vtmIUOwt/s2T0IP2Ma0gMB9oY4g2JM2e8FnWb4e0FvK6i+pf2o42tE0pubchKU I3r+YhCo62hErxSv1AKmfJBSs51WxVAp7GD0+JJTJtSXDiJjKhXSqyaaO8F5kT+qYDyhglxV VqM5W3xaxTKbzmnEgbSuWHzBdA99PKPxC2HpnvHglhYhekheBDxCSVFijFGSbwkFnIw4ppLx mJYFfzPLrvpyOqUjDubKbp+oydwDCdW/g9mEq0M1nVGX4BqgV6RtO9XQKXN6uKyBpQDOaVIA ZnMadmWn5uPlhEgH+zBPeVMahAWRiDN9AiYRagi3TxfM/c1naO6JuQ3uVg8+043h7c2Xh+Or uTzzrAGX3IWR/k13isvRBTsqt3e1WbDJvaD3ZlcT+C1ksIGFx78XI3dcF1lcxxWXs7JwOp8w n71mLdX5+4WmtkzvkT0yVTsitlk4ZwY6giAGoCCyKrfEKpsyKYnj/gwtjeX3KciCbQD/UfMp Eyi8PW7Gwtu319PTt+N3bomO5zw7durFGK08cvvt9DA0jOhRUx6mSe7pPcJjjCSaqqgD9IXO 9z/Pd2hJ8elao43rOoOJ+vn05QsqML9itLqHO1BXH468ftvKPlT12WHgs+Sq2pW1n9w+MH4n B8PyDkONWw7G4xlIj2E3fCd0/qrZXf0BZGnQzu/g/1/evsHfT48vJx3f0ekgvW3NmrLwbyzh TtX48Ex75djilSJfVX78JaYzPj2+gthy8liwzCd08YwUrGj8Lm8+k2crLLSXAehpS1jO2JaL wHgqjl/mEhgzoaYuU6mnDFTFW03oGSqWp1l5YV19D2ZnkpgDgufjC0p6nsV5VY4Wo4zYna2y csKldvwt11yNOTJnK/2sAhp1MUq3sM9QM9ZSTQcW5rKKFR0/Je27JCzHQv0r0zFzsad/CxMV g/G9oUynPKGa8xte/VtkZDCeEWDTczHTalkNinqleEPhIsWc6cLbcjJakISfywCk1YUD8Oxb UMT9dMZDL8M/YCBOd5io6cWU3Sq5zHakPX4/3aOqiVP57vRiroqcDNuRkl2uSi1zJhlTjbXs ygXIJAoq/V6ooc7TstWYSe0li4lcrTGULBW5VbVmbvUOF1wSPFywEBnITmY+ilVTprzs0/k0 HbW6GWnhd9vhvw6vyk+tMNwqn/w/yMvsYcf7JzxD9C4EevUeBbA/xfQtER5NXyz5+plkDUZb zgpjfe+dxzyXLD1cjBZUPjYIu87OQDdaiN9kZtWwgdHxoH9TIRiPgsbLOYsb7Ktyp1vQ14vw A+ZywoEkqjkQl+s+cicC6jqpw21NbZIRxkFYFnQgIloXRSr4Yvqkw5ZBuDfQKasgV9ZHQDvu stgGZ9N9Cz/PVs+nuy8ey3RkrUEHmi158nVwGbP0jzfPd77kCXKD8jyn3EN28MiLbwvIlKQ+ SOCHjACGkDB+RkgbY3ugZpuGUejmaog1tQRGuDPPcmEe/MWiPLCMBuMqpe9rNCafvyLYOq8R qLRa1/W9FkBcXrA3tohZfy0c3Carfc2hJNtI4DB2EGoWZSGQSkTuRjxLNxI2qwMH03J6QfUW g5kLLxXWDgFNviSolIs0JXUB16NOSDckaSMoAeG7zoTG3jGMMqiIRg+iAHl9kH2lTfSjTDho QUoZBheLpRguzMkMAiSYD0jHsSCyJ38asWb2zOGMJjhBqfVkko+5NCgc7GksnSzDMo0EirZQ EqokU51IgHnv6iDmI8mipSwH+qfikH4DJKAkDoPSwbaVM+/r69QBmjQWVdgnGJdG1sO4umqX taS6Orv9enpqXYST3bG64i0fwMxM6MWvcfqVsAcTWRChuxtI3GMftZekgKZtOxzmXojMJXvM 1xKhBC6KbmMFqe1mnR3ZLldjlFIYa61mSzwOoOWjcYEYof3kdqlE1sDWuaODmkU0+CcuMkBX dcz0UUTz2pwIWMwasWJmYZGtkpw9Ey9gN0VrxzLEYJvhAIXt4BnG29U16DV/2cFdgcogvOTB To0FWA1r0YQfpaDVDyQowjpgj2Mw4FXoeeJuKEG9pS9wLXhQY3p9ZFDtSYGeV1pYbEMWlRsR g61xmaTycI0GQ3teB9O7weZa4pfMMbHB0gBm15WDmv1AwmLVJmAb5rhyqoQ2qxLzeHIzhO5p vJdQMtNRjfPQkRbTxgAOigtdVo7nTnM5PkotzP2DGrALlSUJrmNHjjebdOeUCf049ph18NjG YPPGVGuJNhKbUd62n87U258v+oFrv/hh8MQKlgQeg7kHdTQeUOopGeFWFsBHfUW94UQRkhF5 0Hmlk4nxZsji9loYnXP5P2wcbfrSoB8nfCfICXrgLVfah7GH0mwO6TBtPAl+SJyiSBP7ODBg xXs0XUNksMEX3+VzW6J1ygJl2HKKCWTo+bYJR8hbr3ONqb08+77S5MrTCj1BtHiuJp5PI4oD IWLyB+ajXd4G9H1NBzvdbCvgZt+5qiyqir0opkS3DVuKgslXBQO0IN0XnKSfXuqYgm4Rs+QA 6+pAn1nXd04i6yfPg+NCj3umJytQJ5M8Lzx90270Tn5mIW/21WGC/jmdZrT0CgQEnqvxCTg9 n+sHuelO4fG8O1j0NubrTUNwG0u/eIV8oTS7mq7SlLrUDr+drxlyWI7HvsQgqjeTZQ5KlaIy BSO5LYckt5RZOR1A3cy1Y023rIDumGJswYPy8m4jpzHQu4weVUpQVBlUhzlKL1EsvmDeJLlF D8pyW+QxBjNZMGMJpBZhnBa1Nz8t6bj5WS+JVxgFZoCKY23iwZl3mx51e0bjuIJs1QBB5aVq 1nFWF+wUUSSW/UVIelAMZe77KlQZw9a4Va4C7S3OxTtP++662fsp0L8OowGynvPu+OB0t/04 HQaRuzr1zkWchaEjiVDuSLPSfVSa6Bxeoh65w2T3g+0Lc2fSdASnhm0AAJdin6Yjxdl/OtnL TUZJ0wGSW/JeXdqGcqbWRicfT6GY0CSOcNPRZwP0ZDsbnXvEH62gAww/RO9o/Xt8MWvKyY5T jCcAJ68oW459YzrIFvOZd1X4eD4Zx8118rmH9blKaDQmvk+AcFwmZSzaEz08jJnmodGk2WRJ wqNOmA0OlZfLOM5WAXRvloXv0Z2qdCdhemsthohuvvadUOdavb8TYOJ1lwTdtLCjjoidymX0 QBN+8NMxBIyfYSPBH58xjJm+a7g3to/uYQZ6XYmycAFChnGJ0pfwneSdwkGdg0Crzfiv1nNr c10ldSxolzDua3G+bRJlQQvbJ1N3z4+nO1LmPKoK5uHQANqbKrpiZr6WGY0uDiKVMRJQf3z4 8/Rwd3z+5et/7B//frgzf30Y/p7Xy21b8DZZmqzyfZTQoNSrVLudg7anzs3yCAnsd5gGieCo ScOxH8Va5qe/qmM0k5EVHEC4TvbcvT3RzrFcDMj3IlftaI2f3xtQn+kkDi/CRVjQsC7WB0m8 3tHHJYa91RljdCXrZNZSWXaGhO+dxXdQGhIfMYLD2pe3foCqIuqWqtvQRC4d7ikHah+iHDZ/ vfzCh2l7dvuAtzHMqwlZq9aDqTeJyvcKmmlT0vODYI8v+p02tU9jRT7aFbA378ozFLQKlu+N Ny9jTH199vp8c6tvhuXKwz271xne/IIktgqYxNUT0ItizQniUQdCqthVYUycdLq0LWyY9SoO ai91XVfMD5ZZ3euti/DFt0M3Xl7lRUEy8eVb+/Jtb8V6Q263cdtE/ORJew/KNpV7JiUpGHKF LJDGQ3uJK5x4FuSQ9I2MJ+OWURg0SHq4Lz1E3DaH6mJ3Vn+usJDPpOF4S8uCcHsoJh7qqkqi jVvJdRXHn2OHagtQ4s7huJ7T+VXxJqFnerAue/HWu5OLNOss9qMN8+PKKLKgjDj07SZY7zxo nhTKDsEyCJucu1Pp2NhMYN2XlbIDqTYKP5o81l6MmryIYk7JAn1qwH2AEYJ5muni8K9wfEVI 6AeEkxSLV6ORVYzOnThYUA+oddzdlsOfPteBFO6W611aJzBQDr2tPLF89Lip3eET9835xYQ0 oAXVeEaNURDlDYWIjXXjs7N0ClfCXlWSWagSFuoAfmm/ffwjKk0ydlOCgHU6y1ylaptH+DuP 6WUwRVE6GKYsqdTkEvP3iFcDRF3MAkO5Tgc4nPtURjVaYk+EVQDJglsbeoY53206600PobX8 ZCR0H3cV00WyxlOPIIqodt3H/qhBFwBFouZO1HmgkAIN2PEgg7q91ij32q8hpX1P9gaG3OLD PH08fTueGY2G2oAEaK1Vw86q0NMQswYBKOFxpOJDPWmoQGmB5hDUNLJKC5eFSmA+hKlLUnG4 q5ghGVCmMvPpcC7TwVxmMpfZcC6zd3IRli4a6/Ui8omPq2jCfzkuAlWTrULY29h9UKJQ52Gl 7UBgDS89uHZfxD0gk4xkR1CSpwEo2W2Ej6JsH/2ZfBxMLBpBM6KRN0ZLIvkexHfwt4200uxn HL/aFfQ0+uAvEsLUBAt/FzlIBCBdhxXdmAilissgMfbWhHgdVDkPUU6IuoKUammgVfN5YoEG A6phJOEoJZMapDvB3iJNMaFnCh3ceYRt7OG9hwdb2slSFxi320t2Q0WJtByrWo7PFvG1ekfT Y9fG92KDouOodnivAFPpk5xLhkWMHAMGCqpd+3KL1xhKKlmTT+VJKlt1PRGV0QC2k49NTqUW 9lS8JbmzQFNMc7if0PFxkvwj7FZc6rPZ4S0JWht7iennwgfOvOA2dOHPqo682VZUM/tc5LFs NcUPHobWVpy/fCE2SLMyEQpLmmeCsY3M5CBbW5BH6OLp0wAd8orzsPpUivajMOgJGzVES8zM 178ZD44m1o8t5FnYLWG1S0B+zNHHYB7gzs6+mhc1G56RBBIDCIPMdSD5WkT7mFTa/WiW6DFC 3fnzVVL/BFG+1tcYWu5ZMzW6rAC0bLjgsVY2sKi3Aesqpkc26wwW7LEEJiIVM7wKdnWxVnzH Nhgfc9AsDAjZqYeJzeOmYOO0gI5Kg098oe0wWESipELBMUqq9xmC9Dr4BOUrUhbBhLDiyaP3 y00WQwMUJXaodfF0+5VGBIJO6nc/spoZmC/payUkCgsM8Onr52LD3Lm3JGdUG7hY4eLUpAmL W4gknJDKh8msCIV+n7ip0g1gGiP6tSqy36N9pKVVR1hNVHGBF+tMKCnShJqxfQYmSt9Fa8Pf f9H/FfOYp1C/r4P69/iA/+a1vxxrsWNkCtIxZC9Z8HcbEi0EXboMNvEfs+m5j54UGBdLQa0+ nF4el8v5xa/jDz7GXb0mSqYusxB9B7J9e/1r2eWY12KyaUB0o8aqa6ZkvNdW5o7j5fh293j2 l68NtRzLbgMRuBRuvxBD4yu6ZGgQ2w9UH5AgqP8xE9Rsm6RRRT3NXMZVTj8lTsXrrHR++rY0 QxBiQRZn6wh2kJhFNDH/adu1v7VxG6TLJ1Gh3uYwmGic0TWqCvKN3ISDyA+YPmqxtWCK9U7n h/C4WgUbtvRvRXr4XYLAySVCWTQNSAFOFsRRLaSw1iI2p5GD61sr6cW7pwLFkQkNVe2yLKgc 2O3aDvcqPa2Y7dF8kESEN3wKz/dnw/KZuWwwGBPrDKQfqzrgbpXkVFexX81gbWlyENo8Wgll gR2/sMX2ZoEBnrxqD2VaB/tiV0GRPR+D8ok+bhEYqnuMhRGZNvIwsEboUN5cPczkWAMH2GTu LtqlER3d4W5n9oXe1ds4B8U14MJmCPsZE0z0byPjsnMaS8hoadXVLlBbtjRZxEi87f7etT4n G3nE0/gdGx5+ZyX0pnUk6GZkOfThp7fDvZwodobl7r1PizbucN6NHcxUF4IWHvTw2Zev8rVs M9NXuHiTq2OWuQxxtoqjKPalXVfBJsOgI1aswgym3RYvjy2yJIdVgkmXmVw/SwFc5YeZCy38 kBMEVWZvkFUQXmKAg09mENJelwwwGL197mRU1FtPXxs2WOBWPA59CXIe28b1704QucRwmqtP oPj/MR5NZiOXLcUTyXYFdfKBQfEecfYucRsOk5ezyTARx9cwdZAga0PixHbN7alXy+btHk9V f5Kf1P5nUtAG+Rl+1ka+BP5G69rkw93xr283r8cPDqO4MLY4jylrQabgtAUrcjc1s+LoMfw/ rtwfZCmQpseuXggWMw85Cw6gJwb4ZGLiIZfvp7bVlBwgEe75Tip3VrNFSTsed8mIK6lYt8gQ p3Oy3+K+I5+W5jlPb0mf6dMs0Gqvi+rSL/bmUivBo5aJ+D2Vv3mJNDbjv9U1vdEwHDRCgkWo 8WDebrigxBe7WlDk4qe5U9CKfCna7zX6wQpuLoE5iYpshLY/Pvx9fH44fvvt8fnLBydVloD+ zAUQS2vbHL64ovZ1VVHUTS4b0jk6QBBPTNrg17lIINVBhGwI7F1Ueg4sbCvibIgaVBoYLeK/ oGOdjotk70a+7o1k/0a6AwSku8jTFVGjQpV4CW0Peom6ZvocrVE0lFZLHOqMTaUjeoBaUpAW 0KKi+OkMW6i4v5Wlo+eu5aFkTjBotcsran9nfjcbunFZDHf/cBvkOa2ApfE5BAhUGDNpLqvV 3OFuB0qS63aJ8QQWDY/db4pRZtFDWdVNxQJEhXG55eeBBhCj2qK+xaolDXVVmLDsk/b4bSLA AA8B+6rJmD+a5zoOYO2/brYgVgrSrgwhBwGKNVdjugoCk0dtHSYLaW52oh2I79zM0FCHyqGu 8wFCtrLKhyC4PYAorkEEKqKAH13Iowy3aoEv746vgaZnfugvSpah/ikSa8w3MAzB3cJy6oYP fvRCi3tIh+T2lK+ZUa8zjHI+TKFu1xhlST0lCspkkDKc21AJlovB71AnnYIyWALqR09QZoOU wVJT3+CCcjFAuZgOpbkYbNGL6VB9WMwjXoJzUZ9EFTg6muVAgvFk8PtAEk0dqDBJ/PmP/fDE D0/98EDZ53544YfP/fDFQLkHijIeKMtYFOaySJZN5cF2HMuCEBXWIHfhME5ratba47DF76iD rI5SFSCGefP6VCVp6sttE8R+vIqpr4sWTqBULKRsR8h3ST1QN2+R6l11mdCdBwn87oDZI8AP uf7u8iRkFoAWaHL0vZcmn40US+zsLV9SNNfsYT8zQzLRII63b8/of+nxCZ3IkTsCvlfhLxAn r3bo80+s5hjNPAEFIq+RrUpyeue7crKqK7SaiARqL4YdHH410bYp4COBOMhFkr6PteeCVKRp BYsoi5V+/V1XCd0w3S2mS4KanBaZtkVx6clz7fuO1aY8lAR+5smKjSaZrDmsqcOWjlwG1DY6 VRmG+ivxsKsJME7rYj6fLlryFu3Xt0EVxTm0Il5l412nlpFCHqvJYXqH1KwhgxWL1Ovy4IKp Sjr8talRqDnwtNoRhX1kU90Pv7/8eXr4/e3l+Hz/eHf89evx2xN5YNK1DQx3mIwHT6tZSrMC yQcD+PlatuWx4vF7HLEOKPcOR7AP5a2vw6PNUGD+oME+2v3t4v5WxWFWSQQjUEusMH8g34v3 WCcwtukh6WS+cNkz1oMcR7PofLPzVlHT8QI8SZmlk+AIyjLOI2N+kfraoS6y4lMxSNBnN2hU UdawEtTVpz8mo9nyXeZdlNQNGlLhMeYQZ5ElNTHYSgt0NTNcik6T6OxJ4rpml3JdCqhxAGPX l1lLEiqHn06OJAf5pGbmZ7AmWr7WF4zmsjF+l9P3Bq1X16AdmfsdSYFOXBdV6JtX6CzXN46C NbraSHyrpFbKC9CHYAX8AbmJgyol65m2dtJEvIeO00YXS1/S/UEOgQfYOis677nrQCJNjfC6 CvZmntQpOewK/ADLY7fXQb11k48YqE9ZFuM2J3bQnoXsvFUibbcNS+s97D0ePfUIgQWPzgIY XoHCSVSGVZNEB5iglIqdVO2MAUvXlIl+2Jjh132Xp0jONx2HTKmSzY9St9cfXRYfTvc3vz70 p3yUSc9LtQ3G8kOSAZZa78jw8c7Hk5/jvS5/mlVl0x/UVy9BH16+3oxZTfVpNSjgIBN/4p1n jgw9BFgZqiChhl8ardDT1Dvseil9P0ctVyYwYNZJlV0HFe5jVIT08l7GB4zX9mNGHavyp7I0 ZXyP0yNRMDp8C1Jz4vCkA2IrLxtLwlrPcHvrZ3cgWIphuSjyiFlNYNpVCjsvWof5s8aVuDnM aZgAhBFpBa3j6+3vfx//efn9O4IwIX6jT3lZzWzBQJKt/ZN9ePkBJlAbdrFZmnUbStl/n7Ef DR7BNWu129HtAAnxoa4CK3PogzolEkaRF/c0BsLDjXH89z1rjHY+ecTPbnq6PFhO70x2WI0A 8nO87R79c9xREHrWCNxJP3y7ebjDqFm/4D93j/95+OWfm/sb+HVz93R6+OXl5q8jJDnd/XJ6 eD1+QTXxl5fjt9PD2/dfXu5vIN3r4/3jP4+/3Dw93YCw/vzLn09/fTB65aW+Rzn7evN8d9Tu j3v90jzuOgL/P2enhxOGWDn97w0P74XjDGVqFD7Z7aEmaMNi2De7yha5y4FvEzlD/9bL//GW PFz2LtSh1Jrbjx9guur7Dnqiqj7lMnacwbI4C6nyZdADC/epofJKIjArowWsXGGxl6S602og HeoaDTu9d5iwzA6XVsZRXje2oc//PL0+nt0+Ph/PHp/PjEpGvVQjMxp7ByywKIUnLg47jRd0 WdVlmJRbKrkLgptEHPf3oMta0aWzx7yMrrjeFnywJMFQ4S/L0uW+pA8N2xzwrt5lzYI82Hjy tbibgJu3c+5uOIgnIZZrsx5PltkudQj5LvWD7udLYepvYf0fz0jQNl+hg3OVxIJxvkny7t1p +fbnt9Ptr7Can93qkfvl+ebp6z/OgK2UM+KbyB01ceiWIg69jJEnxzisfLDK3BaCJXsfT+bz 8UVbleDt9SuGKbi9eT3encUPuj4Y7eE/p9evZ8HLy+PtSZOim9cbp4IhdQXZ9qQHC7cB/G8y AgnoEw8k1E3LTaLGNGpSW4v4Ktl7qrwNYB3et7VY6diMeJzz4pZx5bZuuF65WO2O3dAzUuPQ TZtSw1yLFZ5vlL7CHDwfAfnlugrcmZpvh5swSoK83rmNj3aqXUttb16+DjVUFriF2/rAg68a e8PZhs04vry6X6jC6cTTGwi7Hzl4l1iQSi/jidu0BndbEjKvx6MoWbsD1Zv/YPtm0cyDefgS GJzaraBb0yqLWOi9dpAbVdABJ/OFD56PPTvYNpi6YObB8FnPqnB3JK0Wdhvy6enr8dkdI0Hs tjBgTe3ZlvPdKvFwV6HbjiDSXK8Tb28bgmMI0fZukMVpmrirX6g9EQwlUrXbb4i6zR15Krz2 7zOX2+CzR+Jo1z7P0ha73LCDlswpZteVbqvVsVvv+rrwNqTF+yYx3fx4/4QxSJhs3NV8nfJn D3ato1a7FlvO3BHJbH57bOvOCmvca4JxgMrweH+Wv93/eXxuo+36ihfkKmnC0idbRdUKzyDz nZ/iXdIMxbcgaIpvc0CCA35M6jpGt6YVu/YgAlLjk2Fbgr8IHXVQTu04fO1BiTDM9+620nF4 ZeaOGudagitWaMjoGRrikoIIxe2jdirtfzv9+XwDatLz49vr6cGzIWF4S9+Co3HfMqLjYZp9 oHWM/B6Pl2am67vJDYuf1AlY7+dA5TCX7Ft0EG/3JhAs8SJm/B7Le58f3OP62r0jqyHTwOa0 dcUg9C8DyvR1kueecYtUtcuXMJXd4USJjjmUh8U/fSmHf7mgHPX7HMrtGEr8YSnxTe+PvjBc D+uBczCDuTuzdfPriCxD+g7h8Ay7nlr7RmVPVp4Z0VMTj9jXU30KEMt5Mpr5c78aGDZX6Ax6 aLHsGAaKjDS71BnruO7wy8/Ufsh7XjaQZBt4Ds1k+a71TWQa53+AaOZlKrLB0ZBkmzoOhweT dRE11OnhNk5V4m71SDMvsv1jMFjHhzB2VXadZ8ielBOK9pCt4oFhkKXFJgnR//uP6O9NwGDi OV5ASut7tAiVFmZ9stYAn1cbHOL1aZOSdxt6pBaXRwsxemZMaEhXdkau/f96ieVulVoetVsN stVl5ufRx9phXFnTmNhxLlRehmqJzxD3SMU8JEebty/leXuBPEDVcUEhcY/b24MyNpb8+mlo /5jPCB0YbPsvfc7xcvYXOlQ9fXkwEcluvx5v/z49fCHev7o7Hf2dD7eQ+OV3TAFszd/Hf357 Ot73JiP6dcPwRYxLV+T9iaWamwfSqE56h8OYY8xGF9Qew9zk/LAw71zuOBxagNNuApxSV/G+ MO0s/Ai49Lba/VP9n+iRNrtVkmOttCuL9R9dsPMhAdKcXtNT7RZpVrAHwuShplToJiSoGv0S m77xCoRHklUCujOMLXpH2cbfyDE0SJ1Q25SWtE7yCK8eoSVXCTOVriLm4bzCd635LlvF9HrJ mKXR4DFdzI8wkT68MM6TdadLl5EQlt6kZlplOF5wDveUJGySetfwVPygBn56zAItDktMvPq0 5PsnocwG9kvNElTX4rJdcEBTenfQcMEWb64lhOe011fueVRITiDlAZSxCHLkahg2UZF5G8L/ 5BBR89yW4/h2FvUkrnV/NgqBQP2vJBH15ex/Njn0XhK5veXzv5HUsI//8LlhHvLM7+awXDiY dr5durxJQHvTggE1ZeyxegszxyFgwAU331X40cF41/UVajbsWRshrIAw8VLSz/SuixDo42bG XwzgMy/On0O364HHEhPkragBbb3IeISjHkXD2OUACb44RIJUdAGRyShtFZJJVMMupmK06vBh zSUNMUHwVeaF19Rea8UdFukXXHjvyOFDUFUgR+mH7lTqUUWYwEq7B5kfGXrSNtCeEqnPZYTY bSb6TWcur3JsD0TRnBaPRaiEhSVHGprYNnWzmLFtIdLWNWEa6Kex25jHyNGJ8fsqrnel++Ge jrewSF53Udh/xBXSSIcdC1Jh1JWewiApL/KWoI2HObUjlSzoaqQNgRxu64LJQ8HTJyHaM7hR goLt7tnq1SY104Qs+tqBm8f0DZoDfek1xXqtLQUYpal4Ga/o/pwWK/7LszfkKX8HllY7afce pp+bOiBZYVC+sqD3oVmZcI8LbjWiJGMs8GNNA+qiN310TaxqagC0LvLafZKIqBJMy+9LB6HT X0OL7zSqt4bOv9NHIBrCeBqpJ8MARKXcg6NThmb23fOxkYDGo+9jmRrPW9ySAjqefJ9MBAxr yXjxfSrhBS0TPv8uUzqX1UYMfFhGpBtoPbaiuKSv6Ixlipa7QUgEDWjSG3PDYsGGHtrqUMv4 YvUx2FBxvkbx3hslwRGguzzTKFtTX0MqH+OSX0S9++TOiqXVnTT69Hx6eP3bRNu+P758cd99 aBn+suF+byyIrxHZgY19Mw/6fYpm8p11xPkgx9UOPYbN+gY3mqSTQ8eh7cXs9yN8EUymzqc8 yBLn5SqDheENaM8rNPNr4qoCrpg292DbdHcxp2/HX19P91YBetGstwZ/dltyXcEHtEs/bqMO HV5Cl2GACPrmHi0vzaEW3TW3MZqso1c7GHR0abHrqvFfiR6ssqAOubk5o+iCoLtV5nbIuh3V hsvrXR5ar42wTDXTycojwe8z8/CAL68kF/PeNm63q16d/Nn2062tb5ZOt+0ojo5/vn35grZY ycPL6/Pb/fHhlXoDD/B8CXRaGomVgJ0dmDne+wNWGx+XCVrqz8EGNFX4BCqHvfrDB1F55TRH +z5ZHFJ2VLS40QwZescesOZjOQ34ltIvf4x8tonIVuL+arZFXuysjRo/EdBkW8tQuvzQRGEZ 1GPaCw17Zkxoev6aRe6PD/vxejwafWBsl6yQ0eqdzkLqZfxJx5zlaUIMWpzv0GtTHSi83duC EtityruVomtwqM9dDQoF3OURc5U1jOL0GSCpbbKuJRgl++ZzXBUS3+Uw28Mtf3rUfphuSAaL 8x0TsNE7ua7RfT+/fmrG8BFqni3IcYvO8NpNxFpKdpmRbQJXbZD045y7yDV5IFXIcYLQnrQ7 9nQ64+Ka3UZprCwSVXDvqH2e6IZY4saBpjMvLeyR+Th9zfQSTtNu6Adz5i8BOQ3jQW7ZLS6n G99ersN8ziUar5sgKt2tWlYqwyAsbn/1omHHAYg9KSzb8ms/wlFc0gKUOekcL0aj0QCnbuj7 AWJnpbt2+rDjQb+0jQoDZ6gZWWyHUgSpMAjqkSXhwzTh0L1XnnQWe6jFpuaTsaW4iLak4ppA R6LhmEne6zTYOKNl+KtQZ/S7zI3t7Vg3Gytuv06Gl6hU4RGDM6W3yWYrNOSu83UjoZPcNXOo +y7Rrp+XAS5O7k22oeIsQMk2L7SzcRghWqM2Z1DSFrtfYUQBtiY2uTFbQ6az4vHp5Zez9PH2 77cnI0Jsbx6+UAk2wICt6PqRqd4Mtm8wx5yI0xodznSjGLdJVOPjGqYde+xXrOtBYvdMhLLp L/wMjyyayb/ZYqRG2NvYbLSPfFpSV4Fxr5D0H+rZBssiWGRRrq9AigRZMqL2aXo7MhWg+9H7 nWUen4MYePeGsp9ngzFTWD591CCPwKCxdnHrTfQ9efOhhW11Gcel2VHMjQWaqfY75/+8PJ0e 0HQVqnD/9nr8foQ/jq+3v/3227/6gppngJjlRityUikvK5hArv90A1fBtckgh1ZkdI1iteSc rECx3tXxIXYWAAV14c8J7XriZ7++NhTYHopr/tTcfulaMa9gBtUFE5u7cbhZOoB5vjyeS1jb BytLXUiqWbd1tDHLcvEeS/9OejxzPpTAhpsGlX2CZLgmboVY4e1z2rpALVKlsUtrQ0looy8r RyjRd7Ak4EmPOLjuG90RP1S4lon6o4D/YmR2E1O3Dqyf3u3HxXWbihhvWmmEzgaJFe0hYfKZ +xRn7zGSyQAM0hls4qoz0Ddrg/G1dnZ383pzhiLqLd4tknXcNnXiimilD1SOYGicQzBBzUhG TQRaAp4MYASihD8OerdsPP+wiu07X9XWDEabV1o2k50aD3SQqKF/2CAfSD+pDx9OgbE5hlKh FKGPFLpNYzJmufKBgFB85fpBxXJp3xrSv1rXoLxJxBJ0ZU8NKnG8bcgmWAVoGXhCTsqPl215 +KmmbhnyojRlplYM+re20hHVMXMj5KulPoiTXq3jPZ6PIz9bnlHhxIKp6wQPV+SXSVZWd+du 20pQLjIYe9WVSQrKDTu6db7XXiL5qujddmS0RtzktWdmJ2soBMggaydrs9lKdHsNrT/U0ioH uXRLTwIEoRNgeXOsYFXBh8RVoQ1E5PP8Fg9ymNIB2k2YBLHyO0Rt2WFw+xjbj9oIs0khR0d7 gqj7nq6Qn/J666BmLJlxYiLKCJruXN91Bx0lHnKbcZDq+xKsExkQYbHvaio72/z27DEtoQ4q vJ/ixH6o/wyHlvswPgA0s/LXyZ8J5ehCoOmhGcVpTeMmk1mij36FGkm6A+eH9FYRoJdPJQHa XYrkRYnmuHmAaO4fJc3ZAFscumgVux+6rOJ6iKQjLDpotHKwSvu0DdMEr/0k0fxau/mHJkgf aCySsl8n+GgG5kRW124dCTkqf0Ru1m55CceqCLdK6wud9KF3ESCCpkpnq95Xb55vffvqeHGp pRYm+nNeehlSH19eUXxCPSR8/Pfx+ebLkXi82jGF23hAsXG6JcyHmsHigx0mHpreZ7mQ2Eon eBVRVL5YVGXmZ+o5irV+AzycH/lcXJtYou9yDcfFCpJUpfS2ExFz9iaUAZGHx8uUTpoFl3Hr UkyQcEW2QgknrFF0Hv6SexRvvpSFvg/xtL3020hnR/ZAQ8FOAmuuXSKoidEuNzur0eHE25b0 Mqrl6a2221Nsv9Y4evbaxkEpYA9nlOyp7Y1dZmhcN7K7djXDDUGuxtouQ4LUXkQ4laN2G4Jm Dy/5Km30qMXMsxvRt+ycouu4jQ/oNlU2hrkwNT7DlEtU7E29MUYFuKYxWzXaWStSUF7fmsN2 5ohCQwdhhqJB96RMwxVqqOKkz1SQGbBpCHZDWUxxgWwG0GXWt3BbcDzu4uA+M3OTo/rBkJ6R IotyLRE0Mt0W+qh539O0ySR80Cu0YLrWk4vsHRFNCLKAtSiN5NJbxTbkuNcLlc7ESzIGs14C MSGVT8izSAei86XD8wLfyNyJm2g79rRTO21Iy5vxMgOViEPo+wHkaDnSpHVAmzEeNyTOahFn HlQ7viitfy/p1MK7A7bJtbKvA9qho4Mi3GVc0DWHAavE7B2+7Ftrg/8L2CudrZlqBAA= --IJpNTDwzlM2Ie8A6--