From mboxrd@z Thu Jan 1 00:00:00 1970 Return-Path: X-Spam-Checker-Version: SpamAssassin 3.4.0 (2014-02-07) on aws-us-west-2-korg-lkml-1.web.codeaurora.org X-Spam-Level: X-Spam-Status: No, score=-10.2 required=3.0 tests=BAYES_00, HEADER_FROM_DIFFERENT_DOMAINS,MAILING_LIST_MULTI,MENTIONS_GIT_HOSTING, SPF_HELO_NONE,SPF_PASS,URIBL_BLOCKED,USER_AGENT_SANE_1 autolearn=ham autolearn_force=no version=3.4.0 Received: from mail.kernel.org (mail.kernel.org [198.145.29.99]) by smtp.lore.kernel.org (Postfix) with ESMTP id 71D06C5519F for ; Fri, 20 Nov 2020 10:50:31 +0000 (UTC) Received: from kanga.kvack.org (kanga.kvack.org [205.233.56.17]) by mail.kernel.org (Postfix) with ESMTP id 757732078B for ; Fri, 20 Nov 2020 10:50:30 +0000 (UTC) DMARC-Filter: OpenDMARC Filter v1.3.2 mail.kernel.org 757732078B Authentication-Results: mail.kernel.org; dmarc=fail (p=none dis=none) header.from=intel.com Authentication-Results: mail.kernel.org; spf=pass smtp.mailfrom=owner-linux-mm@kvack.org Received: by kanga.kvack.org (Postfix) id D1F876B0036; Fri, 20 Nov 2020 05:50:29 -0500 (EST) Received: by kanga.kvack.org (Postfix, from userid 40) id CCF3D6B005C; Fri, 20 Nov 2020 05:50:29 -0500 (EST) X-Delivered-To: int-list-linux-mm@kvack.org Received: by kanga.kvack.org (Postfix, from userid 63042) id B96F96B005D; Fri, 20 Nov 2020 05:50:29 -0500 (EST) X-Delivered-To: linux-mm@kvack.org Received: from forelay.hostedemail.com (smtprelay0083.hostedemail.com [216.40.44.83]) by kanga.kvack.org (Postfix) with ESMTP id 630076B0036 for ; Fri, 20 Nov 2020 05:50:29 -0500 (EST) Received: from smtpin12.hostedemail.com (10.5.19.251.rfc1918.com [10.5.19.251]) by forelay02.hostedemail.com (Postfix) with ESMTP id E7EB0362A for ; Fri, 20 Nov 2020 10:50:28 +0000 (UTC) X-FDA: 77504477736.12.bath86_1909fec2734a Received: from filter.hostedemail.com (10.5.16.251.rfc1918.com [10.5.16.251]) by smtpin12.hostedemail.com (Postfix) with ESMTP id C544E1801BE5E for ; Fri, 20 Nov 2020 10:50:28 +0000 (UTC) X-HE-Tag: bath86_1909fec2734a X-Filterd-Recvd-Size: 74391 Received: from mga03.intel.com (mga03.intel.com [134.134.136.65]) by imf04.hostedemail.com (Postfix) with ESMTP for ; Fri, 20 Nov 2020 10:50:26 +0000 (UTC) IronPort-SDR: C0Lj5zNLY8JaBdSCwQkDDCQnXn/XdtiVCXLXxTDNNa05qB7pb2gk7hx6YxxdknkiclVcXdyHjI VWPDm+qTLiVA== X-IronPort-AV: E=McAfee;i="6000,8403,9810"; a="171550917" X-IronPort-AV: E=Sophos;i="5.78,356,1599548400"; d="gz'50?scan'50,208,50";a="171550917" X-Amp-Result: UNKNOWN X-Amp-Original-Verdict: FILE UNKNOWN X-Amp-File-Uploaded: False Received: from orsmga006.jf.intel.com ([10.7.209.51]) by orsmga103.jf.intel.com with ESMTP/TLS/ECDHE-RSA-AES256-GCM-SHA384; 20 Nov 2020 02:50:25 -0800 IronPort-SDR: PZ7zfGmqfh4BIcknpv++h4AdSZbggLQLeXWk6IOCRMrM3BM0LQ9KPCvDA28UMEX8fZglEC0rKG fXfhfdDPTrPQ== X-ExtLoop1: 1 X-IronPort-AV: E=Sophos;i="5.78,356,1599548400"; d="gz'50?scan'50,208,50";a="331279815" Received: from lkp-server01.sh.intel.com (HELO ee848a5b85f2) ([10.239.97.150]) by orsmga006.jf.intel.com with ESMTP; 20 Nov 2020 02:50:22 -0800 Received: from kbuild by ee848a5b85f2 with local (Exim 4.92) (envelope-from ) id 1kg3zh-00002a-Vw; Fri, 20 Nov 2020 10:50:21 +0000 Date: Fri, 20 Nov 2020 18:49:21 +0800 From: kernel test robot To: James Smart Cc: kbuild-all@lists.01.org, Linux Memory Management List , "Martin K. Petersen" , Dick Kennedy Subject: [linux-next:master 5894/7280] drivers/scsi/lpfc/lpfc_scsi.c:823:39: sparse: sparse: incorrect type in assignment (different base types) Message-ID: <202011201817.3mBMNmY5-lkp@intel.com> MIME-Version: 1.0 Content-Type: multipart/mixed; boundary="cNdxnHkX5QqsyA0e" Content-Disposition: inline User-Agent: Mutt/1.10.1 (2018-07-13) X-Bogosity: Ham, tests=bogofilter, spamicity=0.000000, version=1.2.4 Sender: owner-linux-mm@kvack.org Precedence: bulk X-Loop: owner-majordomo@kvack.org List-ID: --cNdxnHkX5QqsyA0e Content-Type: text/plain; charset=us-ascii Content-Disposition: inline tree: https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git master head: 95065cb54210eba86bed10cb2118041524d54573 commit: da255e2e7cc889e10820bc89752466322426571f [5894/7280] scsi: lpfc: Convert SCSI path to use common I/O submission path config: powerpc64-randconfig-s032-20201120 (attached as .config) compiler: powerpc64le-linux-gcc (GCC) 9.3.0 reproduce: wget https://raw.githubusercontent.com/intel/lkp-tests/master/sbin/make.cross -O ~/bin/make.cross chmod +x ~/bin/make.cross # apt-get install sparse # sparse version: v0.6.3-134-gb59dbdaf-dirty # https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git/commit/?id=da255e2e7cc889e10820bc89752466322426571f git remote add linux-next https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git git fetch --no-tags linux-next master git checkout da255e2e7cc889e10820bc89752466322426571f # save the attached .config to linux build tree COMPILER_INSTALL_PATH=$HOME/0day COMPILER=gcc-9.3.0 make.cross C=1 CF='-fdiagnostic-prefix -D__CHECK_ENDIAN__' ARCH=powerpc64 If you fix the issue, kindly add following tag as appropriate Reported-by: kernel test robot "sparse warnings: (new ones prefixed by >>)" drivers/scsi/lpfc/lpfc_scsi.c:129:30: sparse: sparse: cast to restricted __le32 drivers/scsi/lpfc/lpfc_scsi.c:131:28: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned int [usertype] word2 @@ got restricted __le32 [usertype] @@ drivers/scsi/lpfc/lpfc_scsi.c:131:28: sparse: expected unsigned int [usertype] word2 drivers/scsi/lpfc/lpfc_scsi.c:131:28: sparse: got restricted __le32 [usertype] drivers/scsi/lpfc/lpfc_scsi.c:397:35: sparse: sparse: cast to restricted __le32 drivers/scsi/lpfc/lpfc_scsi.c:398:34: sparse: sparse: cast to restricted __le32 drivers/scsi/lpfc/lpfc_scsi.c:401:32: sparse: sparse: cast to restricted __le32 drivers/scsi/lpfc/lpfc_scsi.c:404:35: sparse: sparse: cast to restricted __le32 drivers/scsi/lpfc/lpfc_scsi.c:405:34: sparse: sparse: cast to restricted __le32 drivers/scsi/lpfc/lpfc_scsi.c:408:32: sparse: sparse: cast to restricted __le32 drivers/scsi/lpfc/lpfc_scsi.c:693:22: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned int [usertype] addr_hi @@ got restricted __le32 [usertype] @@ drivers/scsi/lpfc/lpfc_scsi.c:693:22: sparse: expected unsigned int [usertype] addr_hi drivers/scsi/lpfc/lpfc_scsi.c:693:22: sparse: got restricted __le32 [usertype] drivers/scsi/lpfc/lpfc_scsi.c:694:22: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned int [usertype] addr_lo @@ got restricted __le32 [usertype] @@ drivers/scsi/lpfc/lpfc_scsi.c:694:22: sparse: expected unsigned int [usertype] addr_lo drivers/scsi/lpfc/lpfc_scsi.c:694:22: sparse: got restricted __le32 [usertype] drivers/scsi/lpfc/lpfc_scsi.c:695:22: sparse: sparse: cast to restricted __le32 drivers/scsi/lpfc/lpfc_scsi.c:697:20: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned int [usertype] word2 @@ got restricted __le32 [usertype] @@ drivers/scsi/lpfc/lpfc_scsi.c:697:20: sparse: expected unsigned int [usertype] word2 drivers/scsi/lpfc/lpfc_scsi.c:697:20: sparse: got restricted __le32 [usertype] drivers/scsi/lpfc/lpfc_scsi.c:698:22: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned int [usertype] sge_len @@ got restricted __le32 [usertype] @@ drivers/scsi/lpfc/lpfc_scsi.c:698:22: sparse: expected unsigned int [usertype] sge_len drivers/scsi/lpfc/lpfc_scsi.c:698:22: sparse: got restricted __le32 [usertype] drivers/scsi/lpfc/lpfc_scsi.c:703:22: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned int [usertype] addr_hi @@ got restricted __le32 [usertype] @@ drivers/scsi/lpfc/lpfc_scsi.c:703:22: sparse: expected unsigned int [usertype] addr_hi drivers/scsi/lpfc/lpfc_scsi.c:703:22: sparse: got restricted __le32 [usertype] drivers/scsi/lpfc/lpfc_scsi.c:704:22: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned int [usertype] addr_lo @@ got restricted __le32 [usertype] @@ drivers/scsi/lpfc/lpfc_scsi.c:704:22: sparse: expected unsigned int [usertype] addr_lo drivers/scsi/lpfc/lpfc_scsi.c:704:22: sparse: got restricted __le32 [usertype] drivers/scsi/lpfc/lpfc_scsi.c:705:22: sparse: sparse: cast to restricted __le32 drivers/scsi/lpfc/lpfc_scsi.c:707:20: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned int [usertype] word2 @@ got restricted __le32 [usertype] @@ drivers/scsi/lpfc/lpfc_scsi.c:707:20: sparse: expected unsigned int [usertype] word2 drivers/scsi/lpfc/lpfc_scsi.c:707:20: sparse: got restricted __le32 [usertype] drivers/scsi/lpfc/lpfc_scsi.c:708:22: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned int [usertype] sge_len @@ got restricted __le32 [usertype] @@ drivers/scsi/lpfc/lpfc_scsi.c:708:22: sparse: expected unsigned int [usertype] sge_len drivers/scsi/lpfc/lpfc_scsi.c:708:22: sparse: got restricted __le32 [usertype] >> drivers/scsi/lpfc/lpfc_scsi.c:823:39: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned int [usertype] @@ got restricted __be32 [usertype] @@ >> drivers/scsi/lpfc/lpfc_scsi.c:823:39: sparse: expected unsigned int [usertype] drivers/scsi/lpfc/lpfc_scsi.c:823:39: sparse: got restricted __be32 [usertype] drivers/scsi/lpfc/lpfc_scsi.c:911:46: sparse: sparse: cast to restricted __le32 drivers/scsi/lpfc/lpfc_scsi.c:913:41: sparse: sparse: cast to restricted __le32 drivers/scsi/lpfc/lpfc_scsi.c:915:41: sparse: sparse: cast to restricted __le32 drivers/scsi/lpfc/lpfc_scsi.c:956:25: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned int [usertype] fcpDl @@ got restricted __be32 [usertype] @@ drivers/scsi/lpfc/lpfc_scsi.c:956:25: sparse: expected unsigned int [usertype] fcpDl drivers/scsi/lpfc/lpfc_scsi.c:956:25: sparse: got restricted __be32 [usertype] drivers/scsi/lpfc/lpfc_scsi.c:1088:69: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned int [usertype] prot_data @@ got restricted __be32 [usertype] ref_tag @@ drivers/scsi/lpfc/lpfc_scsi.c:1088:69: sparse: expected unsigned int [usertype] prot_data drivers/scsi/lpfc/lpfc_scsi.c:1088:69: sparse: got restricted __be32 [usertype] ref_tag drivers/scsi/lpfc/lpfc_scsi.c:1209:69: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned int [usertype] prot_data @@ got restricted __be16 [usertype] app_tag @@ drivers/scsi/lpfc/lpfc_scsi.c:1209:69: sparse: expected unsigned int [usertype] prot_data drivers/scsi/lpfc/lpfc_scsi.c:1209:69: sparse: got restricted __be16 [usertype] app_tag drivers/scsi/lpfc/lpfc_scsi.c:1610:21: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned int [usertype] word0 @@ got restricted __le32 [usertype] @@ drivers/scsi/lpfc/lpfc_scsi.c:1610:21: sparse: expected unsigned int [usertype] word0 drivers/scsi/lpfc/lpfc_scsi.c:1610:21: sparse: got restricted __le32 [usertype] drivers/scsi/lpfc/lpfc_scsi.c:1611:22: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned int [usertype] reftag @@ got restricted __le32 [usertype] @@ drivers/scsi/lpfc/lpfc_scsi.c:1611:22: sparse: expected unsigned int [usertype] reftag drivers/scsi/lpfc/lpfc_scsi.c:1611:22: sparse: got restricted __le32 [usertype] drivers/scsi/lpfc/lpfc_scsi.c:1644:21: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned int [usertype] word0 @@ got restricted __le32 [usertype] @@ drivers/scsi/lpfc/lpfc_scsi.c:1644:21: sparse: expected unsigned int [usertype] word0 drivers/scsi/lpfc/lpfc_scsi.c:1644:21: sparse: got restricted __le32 [usertype] drivers/scsi/lpfc/lpfc_scsi.c:1645:21: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned int [usertype] word1 @@ got restricted __le32 [usertype] @@ drivers/scsi/lpfc/lpfc_scsi.c:1645:21: sparse: expected unsigned int [usertype] word1 drivers/scsi/lpfc/lpfc_scsi.c:1645:21: sparse: got restricted __le32 [usertype] drivers/scsi/lpfc/lpfc_scsi.c:1646:21: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned int [usertype] word2 @@ got restricted __le32 [usertype] @@ drivers/scsi/lpfc/lpfc_scsi.c:1646:21: sparse: expected unsigned int [usertype] word2 drivers/scsi/lpfc/lpfc_scsi.c:1646:21: sparse: got restricted __le32 [usertype] drivers/scsi/lpfc/lpfc_scsi.c:1655:32: sparse: sparse: cast to restricted __le32 drivers/scsi/lpfc/lpfc_scsi.c:1656:33: sparse: sparse: cast to restricted __le32 drivers/scsi/lpfc/lpfc_scsi.c:1662:30: sparse: sparse: cast to restricted __le32 drivers/scsi/lpfc/lpfc_scsi.c:1777:29: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned int [usertype] word0 @@ got restricted __le32 [usertype] @@ drivers/scsi/lpfc/lpfc_scsi.c:1777:29: sparse: expected unsigned int [usertype] word0 drivers/scsi/lpfc/lpfc_scsi.c:1777:29: sparse: got restricted __le32 [usertype] drivers/scsi/lpfc/lpfc_scsi.c:1778:30: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned int [usertype] reftag @@ got restricted __le32 [usertype] @@ drivers/scsi/lpfc/lpfc_scsi.c:1778:30: sparse: expected unsigned int [usertype] reftag drivers/scsi/lpfc/lpfc_scsi.c:1778:30: sparse: got restricted __le32 [usertype] drivers/scsi/lpfc/lpfc_scsi.c:1806:29: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned int [usertype] word0 @@ got restricted __le32 [usertype] @@ drivers/scsi/lpfc/lpfc_scsi.c:1806:29: sparse: expected unsigned int [usertype] word0 drivers/scsi/lpfc/lpfc_scsi.c:1806:29: sparse: got restricted __le32 [usertype] drivers/scsi/lpfc/lpfc_scsi.c:1807:29: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned int [usertype] word1 @@ got restricted __le32 [usertype] @@ drivers/scsi/lpfc/lpfc_scsi.c:1807:29: sparse: expected unsigned int [usertype] word1 drivers/scsi/lpfc/lpfc_scsi.c:1807:29: sparse: got restricted __le32 [usertype] drivers/scsi/lpfc/lpfc_scsi.c:1808:29: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned int [usertype] word2 @@ got restricted __le32 [usertype] @@ drivers/scsi/lpfc/lpfc_scsi.c:1808:29: sparse: expected unsigned int [usertype] word2 drivers/scsi/lpfc/lpfc_scsi.c:1808:29: sparse: got restricted __le32 [usertype] drivers/scsi/lpfc/lpfc_scsi.c:1825:34: sparse: sparse: cast to restricted __le32 drivers/scsi/lpfc/lpfc_scsi.c:1826:33: sparse: sparse: cast to restricted __le32 drivers/scsi/lpfc/lpfc_scsi.c:1860:40: sparse: sparse: cast to restricted __le32 drivers/scsi/lpfc/lpfc_scsi.c:1861:41: sparse: sparse: cast to restricted __le32 drivers/scsi/lpfc/lpfc_scsi.c:1884:38: sparse: sparse: cast to restricted __le32 drivers/scsi/lpfc/lpfc_scsi.c:2000:25: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned int [usertype] ref_tag @@ got restricted __le32 [usertype] @@ drivers/scsi/lpfc/lpfc_scsi.c:2000:25: sparse: expected unsigned int [usertype] ref_tag drivers/scsi/lpfc/lpfc_scsi.c:2000:25: sparse: got restricted __le32 [usertype] drivers/scsi/lpfc/lpfc_scsi.c:2027:23: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned int [usertype] word2 @@ got restricted __le32 [usertype] @@ drivers/scsi/lpfc/lpfc_scsi.c:2027:23: sparse: expected unsigned int [usertype] word2 drivers/scsi/lpfc/lpfc_scsi.c:2027:23: sparse: got restricted __le32 [usertype] drivers/scsi/lpfc/lpfc_scsi.c:2028:23: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned int [usertype] word3 @@ got restricted __le32 [usertype] @@ drivers/scsi/lpfc/lpfc_scsi.c:2028:23: sparse: expected unsigned int [usertype] word3 drivers/scsi/lpfc/lpfc_scsi.c:2028:23: sparse: got restricted __le32 [usertype] drivers/scsi/lpfc/lpfc_scsi.c:2053:38: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned int [usertype] addr_lo @@ got restricted __le32 [usertype] @@ drivers/scsi/lpfc/lpfc_scsi.c:2053:38: sparse: expected unsigned int [usertype] addr_lo drivers/scsi/lpfc/lpfc_scsi.c:2053:38: sparse: got restricted __le32 [usertype] drivers/scsi/lpfc/lpfc_scsi.c:2055:38: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned int [usertype] addr_hi @@ got restricted __le32 [usertype] @@ drivers/scsi/lpfc/lpfc_scsi.c:2055:38: sparse: expected unsigned int [usertype] addr_hi drivers/scsi/lpfc/lpfc_scsi.c:2055:38: sparse: got restricted __le32 [usertype] drivers/scsi/lpfc/lpfc_scsi.c:2067:38: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned int [usertype] addr_lo @@ got restricted __le32 [usertype] @@ drivers/scsi/lpfc/lpfc_scsi.c:2067:38: sparse: expected unsigned int [usertype] addr_lo drivers/scsi/lpfc/lpfc_scsi.c:2067:38: sparse: got restricted __le32 [usertype] drivers/scsi/lpfc/lpfc_scsi.c:2068:38: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned int [usertype] addr_hi @@ got restricted __le32 [usertype] @@ drivers/scsi/lpfc/lpfc_scsi.c:2068:38: sparse: expected unsigned int [usertype] addr_hi drivers/scsi/lpfc/lpfc_scsi.c:2068:38: sparse: got restricted __le32 [usertype] drivers/scsi/lpfc/lpfc_scsi.c:2071:36: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned int [usertype] word2 @@ got restricted __le32 [usertype] @@ drivers/scsi/lpfc/lpfc_scsi.c:2071:36: sparse: expected unsigned int [usertype] word2 drivers/scsi/lpfc/lpfc_scsi.c:2071:36: sparse: got restricted __le32 [usertype] drivers/scsi/lpfc/lpfc_scsi.c:2072:38: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned int [usertype] sge_len @@ got restricted __le32 [usertype] @@ drivers/scsi/lpfc/lpfc_scsi.c:2072:38: sparse: expected unsigned int [usertype] sge_len drivers/scsi/lpfc/lpfc_scsi.c:2072:38: sparse: got restricted __le32 [usertype] drivers/scsi/lpfc/lpfc_scsi.c:2082:36: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned int [usertype] word2 @@ got restricted __le32 [usertype] @@ drivers/scsi/lpfc/lpfc_scsi.c:2082:36: sparse: expected unsigned int [usertype] word2 drivers/scsi/lpfc/lpfc_scsi.c:2082:36: sparse: got restricted __le32 [usertype] drivers/scsi/lpfc/lpfc_scsi.c:2083:38: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned int [usertype] sge_len @@ got restricted __le32 [usertype] @@ drivers/scsi/lpfc/lpfc_scsi.c:2083:38: sparse: expected unsigned int [usertype] sge_len drivers/scsi/lpfc/lpfc_scsi.c:2083:38: sparse: got restricted __le32 [usertype] drivers/scsi/lpfc/lpfc_scsi.c:2214:46: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned int [usertype] addr_lo @@ got restricted __le32 [usertype] @@ drivers/scsi/lpfc/lpfc_scsi.c:2214:46: sparse: expected unsigned int [usertype] addr_lo drivers/scsi/lpfc/lpfc_scsi.c:2214:46: sparse: got restricted __le32 [usertype] drivers/scsi/lpfc/lpfc_scsi.c:2216:46: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned int [usertype] addr_hi @@ got restricted __le32 [usertype] @@ drivers/scsi/lpfc/lpfc_scsi.c:2216:46: sparse: expected unsigned int [usertype] addr_hi drivers/scsi/lpfc/lpfc_scsi.c:2216:46: sparse: got restricted __le32 [usertype] drivers/scsi/lpfc/lpfc_scsi.c:2220:36: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned int [usertype] word2 @@ got restricted __le32 [usertype] @@ drivers/scsi/lpfc/lpfc_scsi.c:2220:36: sparse: expected unsigned int [usertype] word2 drivers/scsi/lpfc/lpfc_scsi.c:2220:36: sparse: got restricted __le32 [usertype] drivers/scsi/lpfc/lpfc_scsi.c:2221:38: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned int [usertype] sge_len @@ got restricted __le32 [usertype] @@ drivers/scsi/lpfc/lpfc_scsi.c:2221:38: sparse: expected unsigned int [usertype] sge_len drivers/scsi/lpfc/lpfc_scsi.c:2221:38: sparse: got restricted __le32 [usertype] drivers/scsi/lpfc/lpfc_scsi.c:2233:33: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned int [usertype] ref_tag @@ got restricted __le32 [usertype] @@ drivers/scsi/lpfc/lpfc_scsi.c:2233:33: sparse: expected unsigned int [usertype] ref_tag drivers/scsi/lpfc/lpfc_scsi.c:2233:33: sparse: got restricted __le32 [usertype] drivers/scsi/lpfc/lpfc_scsi.c:2268:31: sparse: sparse: incorrect type in assignment (different base types) @@ expected unsigned int [usertype] word2 @@ got restricted __le32 [usertype] @@ vim +823 drivers/scsi/lpfc/lpfc_scsi.c 807 808 /** 809 * lpfc_fcpcmd_to_iocb - copy the fcp_cmd data into the IOCB 810 * @data: A pointer to the immediate command data portion of the IOCB. 811 * @fcp_cmnd: The FCP Command that is provided by the SCSI layer. 812 * 813 * The routine copies the entire FCP command from @fcp_cmnd to @data while 814 * byte swapping the data to big endian format for transmission on the wire. 815 **/ 816 static void 817 lpfc_fcpcmd_to_iocb(u8 *data, struct fcp_cmnd *fcp_cmnd) 818 { 819 int i, j; 820 821 for (i = 0, j = 0; i < sizeof(struct fcp_cmnd); 822 i += sizeof(uint32_t), j++) { > 823 ((uint32_t *)data)[j] = cpu_to_be32(((uint32_t *)fcp_cmnd)[j]); 824 } 825 } 826 --- 0-DAY CI Kernel Test Service, Intel Corporation https://lists.01.org/hyperkitty/list/kbuild-all@lists.01.org --cNdxnHkX5QqsyA0e Content-Type: application/gzip Content-Disposition: attachment; filename=".config.gz" Content-Transfer-Encoding: base64 H4sICFqWt18AAy5jb25maWcAlDzbctw2su/5iinnZfchWV1sxa5TegBBkIMMSVAAOKPRC0qR x1lVZMlHl9347083wAsAgpJPqpKI3c3Gre9ozs8//bwiL88PX6+fb2+u7+6+r/483B8er58P n1dfbu8O/7PKxaoResVyrn8F4ur2/uXvf317+O/h8dvN6sOvx0e/Hv3yeHO82hwe7w93K/pw /+X2zxfgcPtw/9PPP1HRFLw0lJotk4qLxmh2qc/f9RzO3t8dfrlDnr/8eXOz+kdJ6T9Xn349 /fXonfcqVwYQ598HUDmxO/90dHp0NCCqfISfnL4/sv+MfCrSlCP6yGO/JsoQVZtSaDEN4iF4 U/GGTSguL8xOyM0EyTpe5ZrXzGiSVcwoIfWE1WvJSA5sCgH/ARKFr8Lu/Lwq7XbfrZ4Ozy/f pv3iDdeGNVtDJKyK11yfn54A+TA3UbcchtFM6dXt0+r+4Rk5jNsgKKmGlb57lwIb0vmLtfM3 ilTao1+TLTMbJhtWmfKKtxO5j7m8muAh8TjdkTIx15wVpKu0XbE39gBeC6UbUrPzd/+4f7g/ /PPdxFXtSOsznBB7teUtTQzWCsUvTX3Rsc47Th+KL1NdTcgd0XRtojeoFEqZmtVC7g3RmtC1 v95OsYpnybmRDhQpMTO7o0TCUJYCZ0GqapASELjV08sfT9+fng9fJykpWcMkp1Ye1VrsPA2J MKZiW1al8TUvJdEoKt75yhxQCvbYSKZYk4fCn4ua8CaEKV6niMyaM4kL289HrxVHykVEcpxC SMryXqd4U05Y1RKpWM9x3HF/qTnLurJQ4ckc7j+vHr5EexzPyOr2djqWCE1BtzawxY1WE9Ie J9oQzenGZFKQnBKlX337VbJaKNO1OdFsEAx9+/Xw+JSSDTumaBicvseqEWZ9heajtsc9bhIA WxhD5DylNu4tnlfMf8dBi66qEq/A/9DQGy0J3QSnFGPcgUZTDObGyzVKoT0DmT682T5Mr7eS sbrVwLdhSZUcCLai6hpN5D5lOByNZzP6l6iAd2Zgp0z2hGjb/UtfP/21eoYprq5huk/P189P q+ubm4eX++fb+z+nM9tyCRzbzhBq+bp9GydqjzREJxeUYGMa0PAtS6wsRQwCF+qclf5gUr7Z UnQNCkm2ZajMmcphPwRlYCrhXe0vJcaZ7WlibugolSa+TiEI1Lgi+4Gnj7hMwLhIzrxV3J8Q PI4+J+cKnXielLQfOM9R0mFXuRIV8eVB0m6lEuoKgmMAN5cwBxwnCo+GXYKypryICjhYnhEI d9Ty6I1KAjUDdTlLwVGBIwQyhgOrqsnEeJiGgZgoVtKs4sqJQ7+p4aZMi+Ub90dSzPlmDR4g sghjqIMxTQG+jxf6/Pg3H47HUpNLH38ybTpv9AYCoYLFPE7d+ambfx8+v9wdHldfDtfPL4+H p+kQO4gx63aI70Jg1oGJB/vuDMaHae0JhoEDUV3bQjSpTNPVxGQEwlgaGlQXqMLEj08+enZ0 gTyEj0LPGivzHttSiq71VK8lJXPTZ3KCQhBEy+jRbOB/niGoNj23mLvZSa5ZBo5ghrFGZYIW hEuTxNACnCZp8h3P9doTOB2RT9HZdEqOJCld/TRanqvX8DKvyWv4AnTwismUh2whTLSmzfNE guKIPe41vjnbcpqy5z0eOIS2cFgPk4U/5MgOAqOU54fQG8IqsNOeQKMsBvOGYBsgyenCOuQS Dle6gGqYjlDDfNeMbloBwo4hgRbSixx6PwSJzSBsfkoAYpIzMKoUwqc8wVmiUwmFFjbZ5iXS D3/xmdTATYkOA5cpZ5F5lCYBIAPASWC/c1NdhTIzYS6vZqQiTVldvQ/GuVLam2QmBIYm+Hdw 2NQICE5qfsUw6rLCIGQNliApSRG1gj8izw85Y46ZLRXgIiAuJYZhstpE6UScU7lncGOU2VjJ uZKId0tVu4E5gvvESXqLawMJXnSGNZg1jvLnDVwyXaPezwJ5JyAzcLEGy1LNckUXifq+Gt1G /GyamvsptmcmWVXApvnCu7xcAjkNRtnerDqIoKNH0CaPfSuCxfGyIVXhCYhdgA+w2YcPUOvA hhPuVQsgpOpk4FRIvuWKDfvn7QwwyYiU3D+FDZLsazWHmGDzR6jdAtRPjGGDMLIthjGTZgTx oPIVpFQJAUHZsM7PX/eYtE0zN8gfnVQqt/PI1L6h0alCPhoko0DM8jxpf5zQw4zMmEfagKMv rLWHxy8Pj1+v728OK/afwz2EnAQCCIpBJ6Q+UxASshjDjB9kM6YFteMxOHxv6arqMucwAtsi 6pZoSF836ZpMRbJUwAq8fM4kgw2VEGf0YUlgwxGL/hSjRyNBMUW9ONZEiLUMiHVTW67WXVFU zEU2cMYCfIOQ4ZiwVgwYWyI1J6lMF+RPs9pZvy2E1AWnkfkDt17wKtAXa/CsGwsOKawGju+3 9Oz9IA7t48PN4enp4RGS3W/fHh6fvZMHNwyWf3OqjKWfHO2AYIBILGEsMLRBqtGKHZO/ITTt vhH98XX0pxg9m6q3TQArWi+bIBXqu5eibNVlpIEuajWqrbg2bQ1JpcZaSrx4SXKs8NVLU6lr OGkeRDkIdipZd0MM7mERiC4jfMHqHtW+ttjqhlG1FxYED4200R6Wdz1GuRAyY9YYjsIxP3lP +0BEM7QvTc5Jk442DeyRhs1yNMHEz967kGEnSdv6pvrsfca9ZcMORgdQ1wSC4AYCHQ5hIaRV 56enrxHw5vz4Y5pgsCADoylre4UO+R2H1QimXZzrqhqSEW+zMQMdUNYWm4JLMBJ03TWbBTpr HdJkEise6vzDlECCy4dwmIdiYWvIufBLlRrciUugZ7LlwMC4qEip5ngUcIhk54hBjZEgg3Vv 5qj1jvFyrYPphXMdnFkjVOvrHiOy2s8DHdL0xVHRQY788Sh2CCmDacN0UYPGFhBJg4ahHfSl zp032Q+BoCnyaJZdnpXm+OzDhyPvLSyc23fn6w6Dr5a00gp87M95xqQLXjHQUzzzQ78+G4dt ASF8A92IBrI+0VvUkKJP560HtcJlPc8SWQfeI4sNU0523na1pbt0sjV+df4+sGyKo6aA7oQc LjmNeHLa9lXCOXy9jWEKEmyiYp7xuwhJMrUIhecw+rW762eMTNJuzTqTxpuFaEkF0hgk9gpE LlXi9/lAyMfj3QTvAe59guW6ChyIe8egKJX7dMRBSVOJVAINobKLo4LSKI5HiyB+shOpEZEc Yb2dnEtqmKze2gg95LdNB0gbiO7KLn136JQDpkGwMhxuVOokReFcBybFkHW4e9JgFrmrLxc6 rt0PYTjqMkoTZqxKVKlc1O1OCzndJdiOwMDWrV/FxCcQ+lJGAvvx5MOnEBTKrx2fSQl5Lhxk GZaKe2pQOxYWNRGIRZsIBIZbrc+/jlvK1iGz9jfYykgh+8CNh9kmTh3ctWQUwht7wMOlwqp4 PPzvy+H+5vvq6eb6LrhHsNstmSdwA8SUYosXlhLd5AI6Lt2OSCzFByH/gBhqiPj2Qk3hjZdQ vRXZ/j9eweTNVqZ+/BXR5Awmlv/4GyiQTG6X7k6S71j31mleLWyvt0FLFMNuLODHpScPY2ml 6aOe1rcwmL+cUfa+xLK3+vx4+58wDXUWG5n1ouhfoSSkd2DOP98denYAGodEcCjhoaoMEDvp ikCSLReQNWu6BZRmo4rZ+bd0HHuVjyuceQacdZ62W9MujNenQzi/OIC/T27ZHsTfHi/KAcND A+6xO/VrCQ/fsDsnWMr6yhwfHaXKElfmxEZZPulpSBpxSbM5Bza+XQOH0ShCMdgCVx4Um2qX MQ8tJhNiLXRbdeUsUQV2tkMjB1/OG4x/U07SBlY2oseQCgtKjKg4guszyr63ox/wLRoJf0WO EVKqMYbrCQvCq04GWrthl4ymfTRiDO5CulaNtQoSBKAe0DYGBdZBgkcyeVenLzsKMsMNK8H2 DwnBWk/iM7UxGNa7UgGJvDD2HhBz2ylh6mo/GxM5KI+7XhtzQjBuaCLxmOxNFRKBgnoygDmB 29EKr48tlzh6hqMFj9nvew0UVUxhe0WAoD/MRfRUiBpivb2aTnbdlUxXmV8H4FXFSgxOXVZj tqTq2PnR3x8+H64//3E4fDkK+9JQeN9vbCKgYqE+GxBL4SympvEdZt9t1oPHbMAWqGJaV53A 29Ar0TAh0WoenwZDSAjuFBEmjJERRQUgbXE2jMIxvVN1Kri04SBr0P1VXEVlMlrnNnycLlTY JRgJo4ks8aJsgvdZlncmfdrV37b5dRqjKsbaOSSswvjQKHmbDqS2d0uWLl3xqiHT37Al89PW wXizCiryz7cYF+Tz+zifCpV7WHJynH4twwgTfEiHXV+VJ7S7C+eqDCsKTjkmLDPBn7+f2NuY QoR3NTaFcgqZXh2mrKB1G7ZfuDMcYnGwjJpFuVJY6h683KiYCkwYWBRiswfr/LKXJ88ZTt7U NYw5en/+hapMldHkqD6vycI1GDQDs9iTWc0VRYFh+NHfN0fhPwNV3zgJPORrZO16rzglE2FM YG2aq5j7y8EMrwNNvLKauHQnUUFw2GIFy8tfPVDQxnr9ePPv2+fDDfYx/PL58A325nD/nAo4 RO/jl0Yd8IG3dLWQpGD8Ds4J4r6MpWr0luMk2h1EHLxs8LKYYgtSZPzRBWFDrOaNybDLNHI+ HFweFiPRNEaoTVytcVDJdBIh2jS8ZwNxPKbN87vRomts4NRnrLz5ndG4gxMrL/7949Rhajmu Id+c18nQ/Nlo2DmRuD6Gegd+jxf74fY7Yq9qVO6+xzhelWSlMiCErvrZ732vjgGd8lNXC1rv jK1oWqca4bwLr8SKsSA7r786pkTmaKxt/4OGHYStDMuHE3+cewpu+xvcevrwaLbdk2R6EW7d mZLoNbzsAjb0XEk0Nk69QeKigOB23g68I67uhFa4MBhqQ6YH3r6eHWu/T7btidbtJV3HIe8O Nn+ImIHVRcdlejgblWAb7tB/ntgRxShWh19B9eY9iCscZkm77RmgRtpz9EKDH4LDoxSzxka6 2MRq0aAHYOHXVxE43cX5BkXYc+nMzJuNl4M2NxiuomHDcBSlIbmzosDWRqn3ERYUdgh6GcXr S0/IRN5BkG0tIrYs4B18Ypbskmu0VbYNXAfdXKPdsK9bDzRvI5lfFEUMQtx0gdSblYq7W8Dx UiXFv9lKUoPF9XjTCoJegzf7OzAFHkLgxxC8nMWZ/dXT6QnMw55NYqHojI0WfegwOEwwM/6F +ni7X1Kx/eWP66fD59VfLmz59vjw5bav501N7EDWRwNLiS2ObcmG5JmE14evjRTsFn5dg0lv ECC+AQT7pnFx8K8U7d7XW48Izx8UraM6GUH9YBAx5ruQ4GHni+89baeIqnHpR5EQ+3NyoD77 ibtDYqqueY1i8HWvcVCSjp/dLHSqDJQLva49GuUPEvJXB8PbpJ2puVKu77tv4DO8tilrqg+m Af0Ggd/XmQh6d3rtt33EFcQLfgNn1t+zj4/gHi5cE0WkGYhSVHFQ1IuO+R82TI2hRu766rKH wva7TJVJYMUz/0Cnbj3NSsl1+ppmoMJcN32gAwWEP0LrKuqw96ftklXn62Q8lV2Wbt70FsyF VRma+togIKMiLOW4KeLdYfwhi7/feMPakoWuKCBwn7SBvlK5b+Po3xVArx+fb1HjVvr7N7/L 2bbC2OhzSFc9K0iFbCaKRYShXU0asoxnTIlLf9kxAafp1cd0JF/YppjQ5r96oRoXE0uuKL9M k/LLiTBJIVSRphg41LwkwSZOzCHB42+wrwl9lX2tcqHS7PGzjJyrzVIeVfMGVqe6LPk2fuoA G2MuP569McUO2IDLZenBRrIqr99gpMq3dqOrtHzzRFTXvEGxIbImb9CwYmEywyh7tT37mNIO z5p42zqU8iNF9K1EfWFaykMLCTAMMP2GzR4sg5gEgbYm5T4xFNOXCJ6yw1tcuJIedvrG97se erPPkn3uAz4rLqYrUXgwg4GbNegjcqkvffpcL5jvZJuwzOmZFdUcT08gds7s4S2B9euzUHWs 7BINkSo1sva+qrThhnsZbIDYNX6pETwYq5eQNv5bwE2tpDUXO68dMn4eCRtkAhFFRdoWnTzJ c4wKzHAp2NNP1VB7wuzvw83L8/Ufdwf7affK9oE+e2ed8aaoNUbqEw94CDta8cmmutOXIxDZ 91/ieMLleCkqeavh3KfDdQiIT1JfGiL38ZqhP+mledtF1YevD4/fV/X1/fWfh69hrWlMHF+5 DJgK/eCPOpLCTCDbFmbbylsItKKLB+9G4RIvhFgKtYX/YC4zXjpMJiimWUp0C6K0Kf1QzMrF Biu+2IwcCnW/av8ztEl5gzuulMFybZW2pdLd5LyfDgoyIRpztJUIyVCD0qFT4ltjTLJxEWET lM2iUK6NTjQhwt5D8h02lSvvoAbRtHsNTstyOn9/9OksreyzC7pwhxIXd+tdK2BTm772lvQH qcw83XtQMYijCNjBlEr4NhseEq3XAzDZ9oRY7IKEvPlTcPZeRSDx2lUrROUr7lXWpW4brk4L yJYDQpt/iZR6D2VG10zY11H9pcDBMSkxGbFpohMo/OQm5VjyoXV7Xp+ZsnGNveTboP/NdR1u h4LQJL3u2tF+cZo8J9A6k0HIvK5J2OaeGtVWU0iQgi8bq8nC+DeNmwxtCWuGYqq1eM3h+b8P j39h00WirA5KuWGp3cKQK/CE4MhocBtgYTknKb3VkBd6RwyPiS/QArQWKWG+LPxPW/AJa5OY X0dQUpUiAtlPebxJWKC9Yy1I8gMmSwDBqsG+NBoUJSzKGaP0Ety7eHejdJRqBNP02rwsAJLt aNq8tbXOr94R4/WWP5selJrQIAo1nTjAgz2nCcKd3Hgf5Dk3hb8jkNKcdrpphDAr6L3lWHvN QKU4M8O31zO+6P5sUTqtJ0Bm2fbERK9fJ4NQJhMq2UbQmrZpg9nBs8nXdA7ENsQ2mi3CJZEp Z4qbztvwh0ocrMQIh9Xd5eJbRneNu86b/PceklohNnxhT9yLW80XmHa5x9WDF6KbAaYZ+H0H iPTl0QICeRwgns5Nm9XjQKFoaru4W0AoyxZopbyfeoiJ12OBc8k1MOIADueDm7JgkSxekl36 RQTCGWJVP10KwiHhz3JUhJTRG2hol/lV8SG6GPDn725e/ri9eRdyr/MPUTVvFMvtmbcB8NQr ITbbFL5YDxj7y0ERwn2aicbJ5CQP9/jMyUGwJWd4uAv7eDYdrKc8MEjN27PFdxbP/WwORWYg +xFEcT2HmLPgc1uENjlkCzbe1vuWRcjkWKg1M0iaNDJoEXdwH1j+jKwgvmZPZsGu4YusPDPV zg35BhnEE6loyQlAW41sguC9Tesp7D/+NBVel2GUEtqOVrf4O1hK8WIfYOwrEHPb0i2Y/bqN fnsEaFIdFz02a19BgrHKKU23zHD8Pl+n1oH3MZ44wqNJLxgxUacLnCcNwhVu20rAKBie+grR w4PF8ZdtMbZEmvoO22JDe0a0f7uqa9ju0MUMMPydG06T95lIUpGGBVzhwAXxF4WwTJ6cfUx9 0Ved6ECb8Tn960c+QfJHWJT2DH4tvYdM8rxk8bPhZQ2n2gjRBiF5j93Cyvrb3UjEeoI66a3d HTVadkVCmUbA1wgAulyaj0cnxxdpFJGfTk+P07hM0nrogV8keOVVMOL20jBJUaodb9OoxXWw RUytN2nERl2lEVJX780CN0FZJXQad0EXXoLT/HR6dJpGqt/J8fHRhzQSkjZe2Yi+R1rJGA5t 6lEaoabcJkXDo6iBwvfTFONij5mD9O42pTaV5+bh4f84+7Iex3Fk3b+STxczwGmMFmvxBfqB 1mKzrC1F2VbWi5BTlT2dmNpQVX1m+t9fBqmFS9DZuAN0TTq+4CKuEWQwIlDnMqmU1oZLItLx bUMn0y7PjW2UE+CaxeGrbgwirB6kO2yZdqdW0wvjqr11RBmdM2GZ4Bbn1Jwym5sThYiEI1xJ PtZF40BPrfaVKgS7FvqpKlPdHmjluqZTGaGrXH6uVD6+bt/lOXIeMOU45T1UHmlzlfOSd/Z3 AwArtiq9YdnjbapyQNve5xAjVBlWRVHACI92GG1qqvkP4QuDQrepJ5kKJwNHc9qUUMC5Itix HcnW4jWNRpzdIwnyTDm3zhsGzlpa8D2p7BZ8AyPiDhGjLX8qT/5UsNLMMhUkR5+cKgxN5khZ O5RlNXNzfpmYI2vxUvx+1nCEpW2XLd9Erny3ACPLzwhxuo6VugZcZdcym2JIKCu54ju0cL20 QeLaCMtKB7DtsaLN2Sip7lT9FIYLUPge2OqCLKch01xJ1jBNnTkxbO0Ww1E0DV+bTaW+CvkY ZqBjcRBdKB77ARdfRQUyhuntvWpM1JfClZ2q746dpjfMd1pCEO9pi5am8EhBHZtdYg8DB2bs adI9vRweNSUB/J+8Qw9PxUkCGIpI57L62eLDz5cfPw0LJFHr83AssPVB7Ot9y5XetqFwqvp5 O/S08jQA9SBT6WNSg9MGRyMR/ALWYXVBSt5afee42S+nc1ajcm9fkHoz8JjJcDjWXzRF8UbB MJIhFFjPFSqs7vptmiDpL0gFiXVPFhNV1sKsPMKC7GvjXOwCvngeALdceNPNCWEecHEPfBzc SN/wuYfeHSzcYLrDv0l4EoJDw+KYH+zaCDvB2WZdsAg7fm0KbMXLM5TubrHWgrsiWZ8T2wPC Ct+0hq/oQbaWqhHNtDtPLeZdz3dviD4ckcKJ/0m8oRE2uIoLhBvlVDTrvjxT1G8qzKR9Z26z +25egp0pkFshQkusbYvuBB+/LdMLBTSXYXiyM1pw6F11L8cqUyojmf/gO8KRasIIEJtMOQma CXA7bhMv8J5BbQxOP2XaWjwvXM/fH8rXl0/gyujz5z++vH4QHsgf/sZT/P3h48v/vn5QbZgg n6Evk33iaZIE0BnFlgNAYLD5nmcmKHP0IAYSNFEY6t8uSLwpDxiZBpneBnV/rWyKSI5QZWOZ ZDRTu7nZYPeLpNk5zHSZh9YWzdgBhO+kkDIsb30TQZaONmPDPjqV6rXZX+zcVV1ihMsUhTmH aIldMGBHawsNtk9MtgVHMHBZu/XgEV6LFZUp7oC4BM4IjAOL4grCknLXDXeY4rp122W4btxq 4nIxnAbOsohaG6t82zLv9MtGnos2Ud4sq8yaxZC0gdVI5g/7uRgQN1952+VjRsXdPxdMkHYD lLCuNlMAbdkP0HGzMt13E6CzweZgM1us2GN8QKdOPciD760ZtQiok/IFE7fBpe06DnDYTU2a +VwP2ni4HIzmmmiLC7CAcSHBjRFcmFzeVGu9rhCnzImwk+o9SEUWfy2fMbDviBOYcvHO9PNs g8pXkg9fv/z8/vUTOMi1nQzwROXA/zVWZaBD5IDF4MAxBKYR3LKN26T58fqvL7fn7y+i4Owr /4NZ3mggXX4zRkt+E+WZQxvo4NFRgHglpprvppq9371qSJunr//k7fD6CeAXs5qbsYGbS8r1 zx9fwAuggLdG/oE44IEvyUhe2LNkpi4fj0Hw/XcgO+n0Lgn8AiFtTby4Q3jzE1YbSnwgrYOs +PLx29fXLz81UwpebtHk4skZaoKoJVyz+vGf158ffn9z2LLbrK0ORaaqS/ezUGuXkR71Y0s6 yhWnbYbNhElcoi2uukJFTF0YZrcGXLMcxsl6LGCxw1vaojnSBvVQsDDpi9pW1KWGxxo0s+sJ 5jWNTRbPF6YMlPt5deifv71+BDtQ2VwfbQcdS9qB0SjBrvPXMjs2jaNdKCSMU6SOnJ+vLYGN 9KNAQrVPHRXdXs6+fpi36ofWNum5yHdDp6LqUJmbt8hQd6qWtFC4Oq5FJ+DKSpMTePSkLVS9 LKCkfS2MskUwGEvELl+/f/4PLEqfvvJp930bzeVNPKHRlOSFJGSbHNyob6B81b+Upjzr31KJ V5Xyg9WaogzrFos0zZZgeTljZGcZ3a19Zn7uqowT8Tb+qpqqzpB8eYNjBlW5kYCXHDlX7h19 K+Di2hda/wJVuAGQKSfLAUk9PbZsOl8gjtCgPboRyYjwVTsnFo+NVXFZJltQZ5ghxW2o8Iwg 8/kTg6+Xiv8g4tBf87/WF0fNNk/+FhqHSWMVrblkqUy5ma4+IJ5pYDptZ6q6YFsS8xmS37TH rFu2E7nWylUfLHjsRHo5oEt1wANUij1teX+ov2qzJ/jqf8DSTet2HDQzQArqDHTpQfWlUp/o TNgOLCTpjtW8WuCq/7dc2bFsIcEVvXxUjZtCNgyT8etBMwXlP8XgYdZqsj1q+Pb8/Yf+5GCA 96iJeAzBzNzUlxKOZ3Ccqy3fYOB9KLzWIVzWq4ulgqLeF/4nF63g2YH0nDx8f/7y45PUR6vn P60vOVRnPn2VUSuJrXruvpKmvlU/uBzQIyJOVtXxoZp6RR6lOt6X+aQRGANvmkoprDYL0tuy Rc/oAOqkA36ji9ZHLGAsLw7drd7vSf2Pvq3/UX56/sHlnN9fv9lCkujtkpq5vyvyIhMrjaNS 4AxrWdH0rMRFSyteu+nTZoab1gwpZjAc+N74BKa9N91qecErBb+TzbFo62LolRNeQGDNOZDm PIlAFpN/Fw3uojuzcgaeOjvbrAR+k4twhsGdD6Y+1lr0bpKd/oWCluo0w9xzZWuGouJCxp3c SZ2zIbcHCBeQiE0V3u80Kh+/BqE1COTA5OX5JgS6x7zU6p6/fVM86cEzF8n1/AHcPhsTo4U9 YYReACsbpjcMPJ6AXfUzQpzfsKMJVv8xqe4+RmWpCiV4ogrAYJAxWAIMbku8SHgYTQaqeuBS 4WMBbw4dWAexneBlhzEKugy7rQNEjI3pCu6Ne6N5uC4qu3XToN/oERkP6OXTb7+Apvb8+uXl 4wPPat5g8RWtq7Mo8q0lU1DBS3HpeFWqcLlitQALvH5bvI9qaVdAhtyRnupx8wudvUWt88QK kJ26IDwHUWwWxtgQROj7UQAra/Z0p6Xl1eyHnFMdmYjdMkCkjcXhoqi8te/krz/+/Uv75ZcM etF1Riq+v82OilHTARwHgi+nqVY8qm3U4dfdNmzeHhHyyoLrYnqhQJH3g1rr8I0UEJQ496Ps VGN1nDmWQF9GQy2wu38XjmCE/fQIXfSnVd0iy+Ao40S4xN0c9ToiDOIhw5/6Unqb7M9Tkx42 N1P983/+wcWx50+fXj6JBnz4Ta6m29kP0qR5Af6ekAIkIE4+bTAjZYGQ61E9s1jJsBYh5DWc C5a/PFCzEdITJk5A5L7w+uODehywssE/xl2VzcR7vj05Oli2AWXntslOtDNHiAHPXjPv2Mvf SyQeqKp3oxjz4TCIgexaObhGNg8V+aA1y/ic+xefZfaZpTqIVG0MS7PeM8GMFDlXHa/ww/+R /x88dFn98Fm+3UIOmaAomQDTI97OyvpEc2uaieL+dScsu7nYbUmwl4Nr0zs9dUWvac75oMxC 3UUfV51A+3eo/BzlK+swaK6oOFE+6EOhc3t4pxHyp4bUVKvAOkBUmqau89+aDWRbTrNn0lz3 HSsBuJ/WaPK59JNeEfFuUtoh8FlSwENN5TRHOB6CaAlrGAKu2cz2BpueLEmYcZd0JaKZ48ze RZpLVcEP3IhlZiqxKbaAcIzOGGyStAsD9eRy4bhYIfiACjZfNi9QxTNZGZwwNXFpAD+ntSqa 94d7VW0OOdYG7HzfAwsbcS1lwQ3ZYLNWyLmQDZZKWX7FSwA/qDAc4EoVZZit3YwOMss/5HZD 9mxcb5Oaa13Y10dAXfZ4e1xAEkThhzTrUzrlMhnop5vmrF3QSnLoIb6DegMu6Oid+1VELQcf q8qpwkaEi0M2nPqLUciMmqNCxUrc5EplGcyHIctarLbeug/ah2Vcy2J8MZwqysLq6gWqL5o8 CqJxyjvVqF0h6mYNKmDYNeSXun6C5Qh7o3Oor7X2bp00Q6sJswMta6eb5Iztw4DtPOUxApcK qpZdwNqKr29zVKLNMK6baIXZAZEuZ/vUC4j2KJBVwd5T7fMlJVDipixNOHAEAqqoR0MzdDj5 SYK59V4YROF7T/PYc6qzOIwwJT9nfpwGmjUW3zj4l/LdugvnwIXo0GG4SqBe1RnH3fKKd2J5 qUazAfcTUz8wrcLdtYNwNtgdOWWU/wNvdDXLnSwQ+8EijxRc2qkVWWTNWSJ85Ql26GdtOPYa YEbBrXSm7GAzuSZjnCbKI4uZvg+zMVY/b6WP4w571TfjXIWf0v2pK9RgWzNWFL7n7VQd2fjm tWEOie9Z65ykuvRXBZ34knOp15M6Ger85b/PPx7olx8/v//xWQSu+/H783euYP2EE1go/eET iHUf+Trx+g3+VIOhT/rN8f9HZtiKo989aIi+uMBzJwLHK121jBb65SdXYrggxIXD7y+fnn/y 0pGhc20hdrAjZP2dLJaiufp3e9RvZfjvVTGZPcj2RQZb4tOvayytIjspCk02Vouj742idm3L f+OaCMw0UmUQbtRhF7ZORtfBzYprk+9EDqQhE6Fqx2q7xMYJjipz7daT6gay8iwHzLxnXd3S KIQLu7pVNpie0FwEU1G9wGSqmZBIozldEhTLhktQxZVLuY53UZm5Fg8///z28vA3Phr//T8P P5+/vfzPQ5b/wife3xXvPYvgpIlb2amXVLdDOgHjtu9ranS+LmCmnTaJb1n3MGzPAIZMeMZu BqPplOA7eoYQYUneWuK9Nizz9ofRY+Iaz+4jLpugZCr+xRBGmJNe0QMjzK60SILF+l1hYaWk RwcUUN/NhSlrrfmhRsPdRPwvbYwLxPGeX2DiEswIZCj7ZzweQsmkXB0tyG5F9A8+NGMgIXy0 FYEFbsuJETVpGZrhbRr5/8Rss1r41DE8/LZAedI9T3qXgXeCGyemjY0Bkwxq5epfQrNkHNWQ lZIAl5hMhBeUPlSU2I8LB+i2YGbAVdapZr9GcBi/KTAzk7DTWA0pcF1nZpW7qjTwwWRHjQ0i JP+KlNcXx9lGXMYBvPfde1UnnQlvfPf+r3z3/u53G4zqV+u9sDc/1qqH/qnG7OBs+53Rs0Aw zZ3knnFlxJxegubmFsHpK92ny4xeamz6yFrB0RyfzMaEJX1Ws94opuClBAqx5sKl2M+a4qa5 ol4B1W34RiS0OuiOOldMyqvYfr5wIO3SDSFKDaBVxBuLY/GrH6RYqnt4gK7PNemH7tHZoJeS nbLcqIwk6uayCzDlt4yvtzgoUm3hvfWqQOIMHlcsHHfqtJZixQpfOTS3ufNKyaVpc5upn/qD MVo4STs44FsbemwgG7Chmd2qEBL0rofaWSwaQ3/v31leS2lZ7ZAKBcsxVw9E5A7e2R0NWrpj 41nxMjNaQhLN2PQSaqjmX3MhEmmHrLUGhGo390n2VEdhlvIFA1OP58/orWScJqtzJ5EVpUkA j1yu4r3CJwaqxUsWMlltAESKyLRVV9odD0S047Vuz8J99F9zPYXm2Cc7o/Rbnvj70SDKRVOn dbXYiC1q6nm+UdShFJ9p1t35vErKPKeiYrTlCdvCSpobp4iqtGYoE+t2ofooZXAgaVhBAwn8 +8irfe3ocnaWJRU3bPPjPOJRh1FCJ4aFVC0VU+n/vP78nWfx5RdWlg9fnn++/u/LwyvEgv/t +YOiQYssyEm9KRMk8ZC/4F1fL17WPCsJuuoJICuumHQssMe2p49aY0N+fJJlfhw4ZDpRIshs Igs3D6NVgLlNEVhZrioYb5IPZlt9+OPHz6+fH7hWp7XTdoqUc81CoPZYgvwf2aBe8Mj6jIq5 CxAOtdQaZTVAh0DrIti2ThLdTFU/fyJ3vl0Y5cEGAjEOdNV0QUyxZKFfraeBcghcXZ+qBuyV Y5CrrNQIFzb3x73OcuwiArzeXKVfKmoVdKXOfrnSoWCibtJA8a82upirpKLG7CV1blL6Qd2A JW3g3aUt1zO5S2PUYF3AXI6Od9quIslPVnAAFS5Koow7QeJCQRjHRp2AmIwI5xg0COsYWhWR 5MmYBDoPHdLAx/wNbeholPauplnfmnXgMhxXeyuD2hRDVhiv0wSdNu8IaqwmYZYmOz+ykvHJ AhPLlQyMCo1QYYLO14LACxJ8tVo4IHNXxvAGXkr0erI+R980iRmhBjCSFLgm7cHFF7NqyGde nOLBPDtk8mn7U8tO9EDMXaunZVWMVkHGzNPBG20ObWO/Oeho+8vXL5/+NCeiMfvEfPBmOw49 5/pet8ne9owvgM40Rr9txiE5SxUxeui9GQlVe+7x2/OnT/98/vDvh388fHr51/OHP21zMcgF Md4Rudu61aZ/4RL1fN/muIcqL3qsJvl7Pt7e7JElFdUHlhSq8jbTVLXMzCtDTZxncDsMlCfm RVE8+OF+9/C38vX7y43/93f7nLakfSEM+lVD6pk2tS6xYOVghy64z9EU+FnqxtAyo2uW8/p7 H6D0ILiCgdk1P8HAZiCvhDxEUU0/qbIJNYXpawJmmGajJe41t59Q9+OFC08IyZQJikcRN1B9 oCw8imR6BYaCGK7SgCJ8sE+HviU5+NwxH2pvLD08zui5hIm7+zCYRXApvKkUNhEGrYD3QpfO VTV4M3QgFZHmWWq/gK8x7DC1u2rOeMDRq2p/u/jqWbOCeY2+TD6QvrjoLsSOuIUeyVihNzf/ i7W6V/mNupjd4A2ke5ERvl5aiN7bQjynqlKfujTDYR59aiV7sPfHTgSHi9IuWqNwZLqKYdq3 jE3qEd21GLQ7hdkiAy+hqTRfROzSHIsajITVHEifueYtOFJEJtpiMPrz++s//4Cbtfn1HlGi U9mL9iFSzUYjcUM4567Ta/E6cgG2I3KAwLjZ+SRMZNqTA5or3+ohKIExo8Dl3iGruWqDCT4L h2XJsdBJM9BH6brwTvJ6SKLQ06eUoF/TtIi9GINAnhOWf2f23ulzUePa75IEq6TFZHqY+Asp eFf99RRpssfu6vWvHtVTcAuajlXLl5lAn3jA4vJP6XSo+JiRFPEF2Rdw83yeWE2RzGqWuf03 qqjhAATjqLUnxwvLrFNNV5YlIdYWBoPhlcTBpMlcy6P5vzhR1w0MImdqFoXiCwy3YdeC7yn9 FGYtbmym8JCcdEb0KITpWKg7cjH4oW+0ysJZkQxMYVVhnlU0a1UjSY1/KPR4W0WjGirL3xNX vyFw4RECVyjM0jxhYAVel5q8V/MuGqK2H9oaDilUZeEiBF9YMH1c5eoz/Huh/NY4HKuw5Y2T lTNA+KVt6kDAeo1UI17wpW97TdOTlKk5pKmHna4qiaXM06qGmbud9kOYMokw4yJqjYWJ8Dt3 cIWQ1SBlqCzNqDxYz7TxIcaE4qpI/jatCyEH9Tz2iQ1FPZtAbSzGL+FnrujtQA8ClJ4it/0P aKLUt8YPb0swob/f4JbXCg270ovSFcOJS5u8njBPulJpGoV+LXH+w3HEE/RH7ZxGlgl+uJF6 V/TxQo1VaKHxkt/4UnlEvVVvObMetNdGG3XycaOOGVe2hJW2Q3PaQR/ey2p3Le3MdBdkM3EO zyXtje1PoR0XeWcmdKXKKMtadaHSr6dUThGiCFt88qYY0MzzwtRuLtK395KwCHxvp4yDmcD3 MCUa6ZJoU8yBMNU3XPaY0drhCVHCDXFILnmxGyMUmU9cpnSHH/7k9d73sOWUFxgFMb425rpV U14FZ+0Elk8L0KnuD+Sivsjzo2VFKAKtR+Rva2WSVP5/CC3UVhhJFdodKl9LnJ2fTuR2dgyf 4j3IgW8tUce2PVa4YYbCdbqQW+GWPGcumgaRw5RF5Tq4NOCFAR5AKjNEu7CEX+ZP3WjuiE10 Tr1qb0joiPNxcmHyFXdWe4njq4vExIpgZamvlRu281AbbKKu6sCk/VafaJW17531BsGVjHe4 If/WD9apdX01BVB2PqIXvecnZYzDL9v3I9wDgEj3Rh14BUhjWG9U425CfbwKxHidCCTjZGhl k/5x9Kwj1/kjx9jNzn2mmZNdQUAMrFX/khIzjoIlEfc5KDHpi0ndk1S6KjfN9I5LX/2ltktZ EMe45UzlDV09Qb1U5+aZpelOKRh+R76ORz7PUEvznicaZ0kQWyFWJfatpUQwsgI1N1LZnnr1 eTb/5XtH/fCVK6HNmytXQwazMJStgMARb0uH/M++bdr6zdW3ebvIKxfA3phK7VlpBK4btS65 Q8Znm/1mOQ52V96iYXCoqS04Lf5CQUkmbT3URI8VCQ07yBXR1QD52xTKZ6q1UG9lj0UzGcLW I/pGVK3nBczCVbOyx4wksAN9Ngj6scBjBi8RaqJ6CKo1RUcppM+1SvWx5xB41DTy1ORttqZw WY+qbOAz3e1afOZipIaDyzfZigJ7haRyQBDmkv+n37LjNlzgvBY6oUHbjlE4tdbMXfaBF2L+ kLVUqvkeZXvdNSOn+Ps31GQ4WVKmU0czw78jMOx9HxvRAtoF2jMmrXkyOKke8aNglXEQC+Ab Fb0oLXciXfdUF1oMWXEWrSuAjNEGXVPpBe+Fp6bt2JPq/uuWTWN1lDNgk9hXqvOhhZLrUJwu w9tcbyz+V6qdhPCfU38yHAJqKPgcz1xxP5SMb/S947B/41mdd87Q/NKLjNRYHWagqvhXa0CZ 59o2mRely1r8XOIbJt9IO6yRutOT4eQXCMrrFXaDG4qtKnQshGcThaNcDbZqSh84ZnsW2Q6h apEav+DIwYjSBc7HcCbDAo9pmuzjw3yfMlOXcyy9woesjnY+XMRrvFktrMdN1nSXpr5NTRBW eSG1NOA2l2hGcqviGyxVfMeH5eRKrS+gWVddmF7/ahx0gvQhM97Ik8EIZtWD7/l+pgOzrI8T ubSk10GKgQbzevPgIA++nYkQ3nRyI2IvEyN38Nk9wM3C3PTbofGQeqFBe7RzXW4ZJHHba+X+ 6Owf2BiXb3Is5OYtHldqfG/Ezs5A2+GjhGZMr1vepWEaBDZxyFLfR3h3KUKME4y411tmuabQ iPPac+QzOOjhX733eEdzMX6/j1RDPHk1KJ9I6ETNAWBbLncWRjrNV6RMR4cD0dyzCCqfWZeG akuiAOaTUVW1ATL4OHGYnHBUvJEtCzyUoeDQnDoKSn3VXvRJGssyMGWwy28zuONw5t497jx/ b3wjp6ZevDPKmE9ol6eYQHuo//j08/Xbp5f/6k5k5maf6stoVWimv9EwC9cSaHJEj5101hpi Yx9/Xd1gM6dTKY5NY5dpD8UQ/pW90+54+c/pwGApx7c3wPmuWOFRiQGVofyUfY7T6q4rzFLE 18OW6CqnJQP6tJsjyqEA/JyDGyqZi4eBZonCxemABjdn2sEtq06Z+ot2q7vYIjcA8WTEoAmb EfhLsaTk43qOiiMMC3QgI6r/FaCcyc0weQBqVxwJQ33pA9oPVepHira0EbVzFyBzQT5JUQ0Q UP6fpj8tlYfN309GM7MN2k9+kmKq8cKW5Zm4KcSy4NhUFFifqxyNGmxxAeSRqYKjmdcHNJLH 2jX1PvZ8LDHr94mHq4kKC37btzLwdSyJRrTxhI4SObsDWI5VHHjE7pIGJIzUw3IF0eVwt9J1 xpI0vFfrHkLtGo8R1CZllwMTxxf6kzqbxawg+Nmqoxi1vBV4EySB9VmHojo7jL9Eor7mKwoa pxvgomNtE6RpamZ7zgJcB12+4z259BeGfN+YBqHvwQmPDZ5JVev60II8conpdkMtxxYWLlRG /ugb60SeLcEfjVFKu5PLew3AjBZ9Txz2UsBwrWIPHUTZiav495qGPGa+r9TzJs8IlF+bRUTN pUK1EA11VF/nqR2xk1WuRRlBKq2yGXeDhPatq25Cwn+zXODqjZcLCJt10s+1mKIfiPnKTtAm YwqbsHYQtlKNI/iVXhdMGaf1jZa0UO4nZ4JwJmVTZYwh9MtFqGTXCZnGiB02I3w9mZVlNJd7 53Ean+PZucrj8IOgsjiORVSW90+54+BP5RKaddGgt8z6gnszDtrA3nGCflBTSh8zX57/+enl 4fYKkcX+ZofQ+/vDz6+c++Xh5+8LF3JagK9FSijQRWz5jGAlORfVAYW4whj3ZaCaAWKoHddN 4ao5y+7dTjvAU+AsC6IAW6C0grQAWSqSl0mgXqqoBWc9bLkYdLoxqogh13rkfacbzYGTb2oY OytRnLZPYTl6hn5VzsH5j6k7VPrl80yz3efM3mS+/fHT6buENt1F25IFYaqKHBMuJViW4FhP j2soETANNjzbSYCJYInnGvV+LVlqMvR0PEvvxKtH9U/PXHFZX9P9MCoOYSy4JI6VuCAQ9AuV Aww2xlXuopnGX30v2N3nefo1iVOd5V37ZJg9S3pxNaKKGqhcnZV+slzPGhmei6dDi4d3USqr LO3wk7dBgJC46KWGKd3oh6ccI8PtEf//rsNArlORDk5Z7oJcwNVDFaws8xM1DIKHzWfhwQtD C7BC1qwhbcxdLPjiLirV56RSbnvJTmeKllq2GWw9eLFoaazoKdGenUm6jBUORWG6v2CB41Pt DbQkZ09ExMsyMoSPdto4S5YrG8eRYLuPxA2ftbL+ax/K0xojyw126RrrTGGcDXOgKBkGUCDU qCTit5TqsyIjyiMUFaIdiJQYdByyFgVOpLkRNbKygp0P/IfatgrmVr5nJtnVfC/lsufOXCNF V8uVRCl5I8JT2I5LaVT37qdykJxra6inNp0rSXWTeAvd46ZjGht2aKdx9HzF9GdDcDwPENan GvW7r/Fd2qmjY0aVpwsqfrgEvueHrmIEHLz9SSB1cs1polmThj7uS1Tjf0qzoSb+DpMtbMaj 73uujsuehoF1lqnLHd6dyy5GZc3J3gt3+GgCLAocGMzZvsVb+0Tqjp2oanejwkUxUDxXPjsq Mt7DlrUQz3jMQs3YTAXLyzs6sAue8ti2OR1dbX+ieVGgFwQKE60oH0SOyrOYPSWx7yj80rx3 NdV5KAM/SByoIeHrGHbNrHKINWa6CXcWjnkhWVwbgsrJdQLfTz3sGl9jy1ikGWNoYM18f+fA iqoE5ZN2jsFaix+uD6H1GF+qaWBvLUm0KUbqGNb1OfEDHOqKZgmLhvdGzmXfIRq9t1Ze8XcP DqLxzxR/36hj/b9kB77WOJp3Xh/RhLd8EJekxv6ssdR8ycOkYZ1pn6hPckzMi9zZ73nrvjnO BFv4Jps46GrrrmW453erSekQ+KGjyVkmVp3WCQeeNxrvYm2OnevLJYxbVNt8yRtf09eT6v9Q W4RoVahPJXTMEs40ePAD9JhVZ6pLZ9mXvuQyWKgfNmkcYxpH7kbqWBx5DqcHKuP7YoiDAPMB oXFJZzZoRbK2ooeeTtcycsykvj3Vs8zgGDP0kUXj6FqN3gtXT/i3zKoYRVeqvqY7Y6AJkiFB CZrr4aEEa+xEUEClFxq5c4o5AQQ9yGfvtCa/epQ7UwKTEnoWZWdRiEmJokXnPT1//yhCKdJ/ tA+mj069sojTfYND/Jxo6u0Ck8j/nd3za+Quo5pmLKl84CDUntxM0nyDP3ZsQhLMT+cA0fxm i4JZUBsxrfW0fTYn1MndXDMjOxHuiCOOU3/gQaEjqQszRsF6VYz1zeZeGDlTkocVvz9/f/7w EwLTmg7Zh0Gxk7gqnZHN79C5nt+wiiy+nVfOhQGjTaziUt2GnG4o90aeDlQ6O9juUxo67tOp G1RLOulGw0mc4yEEUayc1IswuvACDx6zWedw7OX76/Mn7Mx1VhfTILK9gjRfv/wigB8yufD5 a3sgljlw+S3U/cyp9NGiX0g/VBAe6LMDmJpe/M02788zh75+KUS7+WeQaq8bZ+I7ZtMYLenV rhPLskZ3iKQBS7mOOSX4/JgyEJDQyq+wG9HtVCzUcPkt0HkVeDcQ8JYxINU3ON7+jjnBhZgL mo5Br4tQzb/u7jAdyCXvCR8Cvh8FqktVhPfNmtFyjEf1Of9MnxdKvk6KSpuwfMlrlczXwLfb gjPxMSq/0xyjfRdYZXHaNqjDwCq1ZNVUdQC7CxU8tAFnRo4+NTiw7zCTZGB7LCII0yOfKlWL G4YvMxoEED+M0JXbWGmsxI30sJ27PBh3fG8tOtL10+kqwlZmJ/RW6NhWeUnZSazsqlH1dGTo Y7P2fau5G4BgNzLtskWAC0tw7qIZDkkq04xmT9clSLFO00IDASGzXZ8AGXzcna6o308Bd/pR LdDg4hS39OXgJT/gJvocdDipk50B9woH9DBxdm2yfMB2+3TgcivTro6W2HZtN3WkKbCLZ9rV FE4880r1DCKo4DVBxPVTjioFHWJeyFC/2v3KhrGhpw32WFjwSENFeRsOeoNRrOo/XBL4yq9d oYiC5Ke5yriRITvl7dH8JEjVlqVGPtg1Urv45nYUBGf0Yv9SY78U1xq1UeLAWQux1Fy1CHkQ 18700AKOsAQdAgJrUgWn2CLaUmXSHLNTkZ3BI6jjJcmQ8f863EkFX5erJ1cICVuSU9QP0VB8 Yl7YAFG8MTVEZQFn8mskeHnbFWTIZaS6vfIfk7jq4uuo/tApyOZQpdigAPDEUxVXPSuw0lxs 5jd7TlEPEfMRCbAByUh/kOI1z7SqiuaIL+JzCW57z42hvjh0xpmjGrJdiB4xLRxdRvbRzre+ bwb+iwC0yYZeOXBdAGlKqtUhL5QUd2taV2PWVTk6eu62sVqLU1GB33cQm/V6G5doojOqY3tQ 7+MWIv/w5dIYCltVFwhqvnXsbDH7wHPm9N+//vipeA607Wdl5tSPwkhvOEGMQ7ManDiGBmed J1FsMNZ5qtlJAZFrrSZF89YIFPBXuNPzb8QJSGAQxatEPtIuRoNSFkV741s4MVa1+Jm2j0ed z3jPM5M6/RnUNrP//PHz5fPDPyGm/Bwi92+feXt/+vPh5fM/Xz5+fPn48I+Z6xeu4UDs3L+b Uy8Dm2dzQmkDldFjA47+jefBBshVSjXkn4HaDhxNBtWzMWDz5ahWV7FEyHiBtHknwjA6an0u aj5nzPR1h50UAdLCtzG9Bny4o+4lZefVuLMhAOeHUUtUqv/y1f0LlxQ59A85KZ4/Pn/7qU0G fW2gLVwuXxx3CcDSt4d2KC/v308t386dbANpGRctsP1TwLQxAmrJEQfhKlvpiFDUrf35u1xg 5vorI86sO4h0jtLKOWDJcrrhWkK0STJcDsZUmseZ3h1AnINkOUqXLBCbDMJr2ssxeE133hhu LLAOOmcKMMjlVPtK68NC7QhShB3gNAiFMTjki/zm4FjEXE0p7qjlQ5qTZGKDJiQoeXLS0Yf6 +QeMy80/uR2dWcTzEeqqppEBdZTRfuTbaryS60sYrRZbKF4tw215cGRWGiFwIE7r2E2gEDL0 VSBwiIXlTz2bSneHsxC1A3ggtnLO6MRuJIFuZw7U5XWVoxYs81O+KXiB+QHyXAbXZaDDRoqv CgCO8JzbjYplyVGf90/NY91Nx0fD5azo2Bo5Z4PRokgf9mEZVHaTBoG/+/7159cPXz/Nw8wY VPw/w7gLqOAUEZyFTmZAXI1rqIo4GNHQCpCzvjWtJCHP630p6dKv1uJ9U+fYoucqNUCdNJzU qA0nEexpk7PlwTzXjHWvyhv50yuExdua6CTCIBBdIe1sj5ng2urDp68f/o3J2hyc/ChNpwzi t6MipZ1+qcEi3v6pEGQPKwz8r40we0+2AblUbhluFZQkvpZ0gYcbmSwsddYFIfNwy5KFiXHF GT3ZWhlGP9LDZq7IUJeo5+qlfDImSay/mViw/pw6bikXjjYrqnaweq9/+fLy4/nHw7fXLx9+ ftfPsecOcrHY9cvlIm3QM7ZLKuFiHQNSF7BXrl5gCdUeU88ELpuxAWLk8uW05pts5K8BptrS WHiXJLR/FMHPjbFhM5th0qS+aFilrsTpitlXCHjx6a3nBN0ZeqvUVssY4Z+fv33jUrSQjy3V RaRLIOwUvBfclglBn/dInWjFnBfU/Ea6g/UV5QD/5/nYqqZ+BxKGSMK9bl8oiKfqlhsk4a3k mhnU+pDGTI1CIKlF816a2Oh1ZaQmUR7wEdMesGMKySRvHIxOpa1ZCO/nrG2s9rhl+T7cYTNS wKvQrXVCnU+l0PA2ldndsatiJagv//32/OWj3eEk7yK+hJol5U1ndsBtAh0EG2ae1YKCHji/ Tpw5hKOVbKabwZERJjR88AyXaZSMRkWHjmZBOhvZKcKs0TZyspT5X2gzNeaxpPb0fdsQq6cP eeJFQeqqr2lrJ4irwqcN7S5NQvPDgBjFkTmy5WppEu0lXgEi/ImibL4sjNK9sz+ljUYaGwUK cuCnVj8LII3xM62NY+9eLWY8sLN+rMcUOwiT6K0Clz1WC8zmU65k0gJKm3f2GJlPiuj9sXMY Ul26ngctnYRfTt9ZdXhWJXmCnfXVfZ6FgT/iIpBdpVWGvVtVvhf46lv3ZaxAnDVzGMqFwDdH XBaGaWovDx1lLcMUP7n29WA3G9rDtB0H0+n6cntlf4t8DcIO979ROx1Ys0OS6VP9eOyLIxlU A5i5inoggJtmYHnzQQi3pCT/l/+8zocGlirBk0hFVzx1UTeXDclZsNt7LkSPjK5i/g3XrjYe x0HaxsCO2iEI8iXqF7JPz//7on/crLmA2z3tA2bNpS4wMnyW6rZcB1InAE//clC/1KGl8aAh hPRcYkf2QYgDqagpXlyIL7k6j/8XeN6sdpi6KsH1hTcSJ6mHf1qS+o5vLrydC/ETZMTMI2MV 1YWHZxG9VdNHNrL70sRkgj8H4rgMU5mrIQv2ERrLSeGqhzhUbf9UbC4JB1c50IltF5DbtV8h QiqDSwhF45fcKNbA/SIOyQLZpeuqJ5yKeP5UUbdn1Q78JgErvqHPkj3Js+lABr5uoGFcyZju g0jmo01QsflOMsYKNlQlvqSbqXDAYtLgwOEI90ZcfvNi5e5krtWUcdlSWb1X8i3w/MimwxSI td1NRdDYmBqD70yKjcKFgR2Uk/3lk4C4vR0jDbGIS/LDYzCHkbaKniGHZ1OT65Q/Ik0Cr0o8 nB5pO9FSc4740d2mEgxbluIwZelv1fU+p6fpVF6KajqSC+rtdskTHi0k3g6p6IwEWNcIzBKz jO/h+gcfXOiKvLBQ1kEZdi+KOeCFNgBSPldU/7SLc2zRW45iKNhzoBrCOPLRKvi7KEHLyotB 3FJJpjjCZFUlH6FTYF3OR9DOj7BtR+PYOxMHEWYMr3Ik6v2rAkS8XLsxAEidxUV7dCqvU68+ hLsESzvrPwk6XpZBJYaq3Hx22CHPyjcbTmETtx8i7+6I64f9LkJa5JIx3/MCpKmk0oq2SL7f 7yMs3qnhV1n85BJ2bpLm6yl5TiYtVmWkWOtMSlqZM3h4GKoPhBT6zklPVUvHhV7Dw0PduFqF sCA8OkeMlQbA3gGEPl4PX0wyG9gHureCDRp4I+ASo8qzQ7VmncPX7Q8VKEZDSKsciYd9KAAR 8j0sTDyMnCVx4CMZjXQqSYNcVqwpu0K40bKrP4wdLisvHBn/h9Ceb/OoJ9aFTdhZQSQSrJSc xai/iA334cOwlGILdDyOXZhodJ5IfbC/u0yiMImYDRxZhpVWDlxBuwxkQN1Cr4mryE9ZjeRa RYGn21nPAJd4CFYgB/C3BCuDNHfAjEIXlhM9xX6IjC96qInu+VZBugK9BlQYpDkgmhxOkZ1y 7cL1LtvdmxY8/94PAqTeEFqE7792M8r1PkJSCABZGWZAD55lguZ1pwqjLqoUDr4lowsjQIF/ b2EUHEHgKHkX7N5MHGNtJwBk8RQvTvElDKDYi/HLKo3J39+pk+CIU7tOAOwTlB5y0TBwISG6 onMs5ovF/YrEcbh3Jr47LAVHhKy+Atgnjgbk1b07VOqsC70A6ZchM57xrSmKpgz8Q+32+b5y 9glfd0Jsg8n0RxbzGKljhLmqEw8djHWCCUkKjOxgnJqg06JO8MvajQEVGxUYrXqKLQp1iq0I 9R6bNvU+QHnR0vZRECLykwB26BST0L0Z3QyZPNGjTJ6QWnk02cDV4/vbBfDsvd19nk54g77L I+6D9rhg0NW4Ff2a9lbDjmU3JzsNPjJWOBkXLjkQ/vduNTlHdm8l2AwxraRFncF5+Z3EnCPw sWnFgRgON5BPqVm2S2ofG0xsGFgSIdIbq+s4RsYvn71+kOapfhW0oSxJ0QsyjSPB5Ghe/xQX t2hDDJsLhAFbUzg9DDDZdMiSHbLqneosQubhUHdcKUD4gR5iNRbIvWbgDDsPHV+ABPeFX84S ocfbC8OVkjiNUdnuOoCjyjtpb2mYJOHR/loAUj+3mweAvZ/jKfaBC0AbTiD393zOUiVpNNyb 7ZInVh1br5C8ALTlUuG8nSt507q7bUxWMKGZAM7cTAeFC8S4xE7B1xHqKWhmKuqCa+INvCqd T4y5Sl2Rp6lmSmS4mdlQyhdyW9q0W0+FM6Jp6Knq5GvB80JaKx/bK/hO76YbZQX2FSpjCRoX OxGX9xokCbw+Bu9v2f0k7twRxrv1BQaw4xT/vJHRVjnlHKm7KL29nZhwctkXjwuG28IW1zd5 to6/yKfOd7nM8H4zvFz/rzXd7mqVA3oLXB9L/WlSjCexK7lpb+SpvQwIJN+Siac9s9ffHOFq O/D7QOsCMlGel64MwnbKuke9Pf/88PvHr/966L6//Hz9/PL1j58Px6//+/L9y1fTX+WcT9cX czHQte4MLQd7yzLQlgPymmw+PEOQ+QxAadNtHHAoDlfIaYqAJNUA6fQA/ExkpMKM1zdp3K4f WER58R5B5lsWrPj5pe6dmr+ntIcLQCz1bER2L3l+w6rKlRgI36wga57rUL+TKe/6C5ItG7qa Zj6CkIrWie/54DJHLYzGoecV7AB0pBxpymMmgre4JPAdada+FI59/1xNS3755/OPl4/buMye v3/UnPfTLkPmaz7IAG6LSYQrm7V2nGfLCNsxwaFdyxjV3HYz9ekFsDB4wKCTeEXAHTieekF1 onz2uEYrxlPqTCim22AespqoeW1n6hywVgJhG/7bH18+gFdcZ/CEusyXNXHraE4j2ZDudxFB V23BwMLEx8W3BQ7Qi+larNqGNZpIQoYgTTy8OsK1HjwrwN1cbzynKsszPWPhVtLTPdwIer6P Er++YY9uRYbi1k6ZvitNP9ECumnru9EsN5Ibgj+REF2ymghr6QQ5xBTZFU3xROjxyIYqQr/o IHEnOiJE1ewPks+7g3GIpyBOB50LCy4ELzB6tr+Cod4J67Wrnk3VuDI5kqG4tf3ZOpIWnZT5 EDPQ6ZtI5bn3lXUXxAGm1QF4ojHXgkT7KldOQzZ1hNFM+T6g8VKkPeuaf9VxKupRFRCWncyP oo8sDvDTB4Dfkeb9lNVtjotjnMM08wRamnZ16lkNL8nu/hV4jNryyEmyXuvq1MUi1KKqOu1G FTaexvQD+h73zLYypDtM9ZzhdO8lVmFgDGLVK93rx5YbGT+LE/gQh7FrxgK4NwtfBCS1pOK9 eCqNGaCImS8sR7TqaqaFCh0ED52ymAwoS8RMAZFcbfCV7rj2n+1YzdC3UKq0EDWI4t7Y7NE+ i4YodfUXPAZJzT7om2iIfezsAlAIs27XiNFdEo8LoGXHqiC1X4mrDHWEepwU2Pkp5WNdOYsn hzHy7L2QHMDxkfuZpMhsqDs0wjBglmU/UAd4YRaG0Qhu+4zLPo2x6sK9c1aAwUea6gOK51zV F7O8jlQ1QU8LOhb7nmruIM20DU+ziHs9tczNslv/SkF3boSL5YPe4/ABhg27Qtas2JVMUoSa xmYes704Sg2QHDjVFjxWRD6VNL+YL8sOa8zhVu280B5LGwxm54bCDLneKj9IQmR2VHUYqSuC qIK0wjeIwuDdrO11TO8IA1WbnRpyJGjkMBDM1qcMNtFutQVAGk0IRAFmKyI+vo7kEamWBqio CYMEsS1AUN07AIdx4/4ZDH2jTWdlFxE2Z+SeGAMskXdXihH1dbWK9DGZJ346msv1jJiWOXoq 9CRdrmVCtTVWYXgXqJPmp0k6UTvpVC1476pGm7J9hJMr/TZoJdpBKCwOGdD02laDdp2+MYDj o4t0icUutWrxtvHA0Z04udu4PmPV4bLU0XidgvGYYtoGgsKXxphqofDkUbhX1jYFkbob3lTL ZKvyFl+KbFbe6WDB+xa3UMbuVhnT/RTU+c5J49GH9QYZtrfK4JDqE1qm1IvuFmnqNhoS+I5m FthbDVySJgojxzprsKXoZfDGZDoI2RCp1dxNLFmukeZadUUpq/ahFzmgOEh8gjUP34FiV7uD 7JLcr5NgCfDWFeasuOKkM4X3B6QQG9AP2wQKR84pvl0oTHK3vV8+54mTGKsAZkero5H+TA3n EurZ3TpghrYamsY7/Om5wYXqSDqP1NMcGeyDtyaC4HpjugqeJLxTzB63pzVbBH0EaDClqumr iQV4v2adz1vbMbDrLtr5b3Zrl6bRm13CmRwPJFWmx2T/1vjgGq7vo58pn7I4kAjdm1Z9GakN PMzdoab8Ko+p6ipYeXlf+K49tbvyJfSNMSp4UseSLsA9bj+rcN2wI9EN7wnrDkXfP4GfDi1e ie5KRUkxK8w2wEU2NMGw0zx7qcisryNIfQ0cH86CuiOouqzzMN/Hm55FdZrEmMm9wmNp3QpW Hbmg76GbkyWUKhDP0YvRvYlDabAb0QwBShoM4ipc5PMx78AMbVnHgjBG6y8V4SDEm/6Odm0y qa+nDcwPHcvN3QcGFtt90Uwy4W2q6Nyu7PcOy3SL7f7yfzVdqGyQMwxFb54u9eBaSgtMXdEe 9aoPbq6yNpchlbcbvX5qihVC0nGGPosWhq1gQY9R+rtrhtJZ2zwpgFoHRpqnFquFxnQiffcW U81VnvMhf4ttrNGcNgYqX29gX13X2FeIBgb3qdgBVbYcC/6pUpp2gIihvU7tqHbQNpMmvhCL 0Knv0Htu8GgInKD9tLrPZVH2KQnRazUAdW8jIoLXpWJFCuBWNREjm9CG90Le3gSmXfJCDebS rTvF4/fnb7+/fviBeTYiR+yg+Xok4Ft0K34mCE+wx+7CfvXjBcpVDyr8BwTQoVN+oBiVGdS8 m8hlVHyiblYKgIrnOzXqxnaFWVGV8AZTsX3g2Llms/NOvUCglwcUKg/g/2a1fMFACIpJqqrN fuW7jAqD+9iJd0I+lbSvwfWa9S0ddJrjS4bBaENOmHK4NyZHuIhuKx0Gl73oN0A6jH4Et1w8 P1eTuDBIx07w0hdDr0atWXYSZjarQ5iXLx++fnz5/vD1+8PvL5++8b/Al6ZykQ2ppFPcxPNi s82kx8jKj7ETrIUBPNcNXIvep6M+BDQwshyyuOomKk/6WgkRsaZTyWpRPckL1SBvo4mjoG4w Go7UueYAdaNN5gyZyRk9m60zI3MBuMnXxnYET+9z/FprhSBZ9/A38sfH168P2dfu+1f+fT++ fv87ODT87fVff3x/hiM3vdfARRBPprbqX8tFFJi//vj26fnPh+LLv16/vFjlmB8woU+ZNlC2 2lqRu7kvqU+MQGqzVZv2ci0I5oxJjPijcPyopbjyCeRs/UvuMMaDujs884nl8kiOeEBzMbYy 0oOx0ilXPdavSHXNmT6KHkdjBTm0XKGwvkT6dD+iLrOBoQP37csEX1q5e/7y8umH2WuCFSLd TxCQma+oqDs5hZNd2PTe84ZpqKMumpohjKJ9rH+dZD20xXSioKIHyT7Xv2vjGK6+598uvEcr 7dJi44JmcnaAZGG07t6oeFHRnEznPIwGX1U3N46yoCMXIc5g0kXr4EB075Ua4xMYh5ZPXuIF u5wGMQk9LJruloZCJJQz/799GARY6SsD3aepn+El06ZpK3Cs7SX79xluP7Rxv8vpVA28jnXh Qay9N9jPtDnmlHVgOHzOvX2Se64Ffe6YguRQ52o48/xPob+Lb9hAUPh4NU65nwZ7c0zP/Uhq dmkgCs7eQyNlKplyroMXRo8e2pwAH3dRgvY0CPNNlXq79FSpTrQVjvYKEejl8PY97KsUlr3n x1guNWkGCi7OSelFya2IfPyz24rWxThVWQ5/Nhc+DLHLfCVBT1khYhK3A9w67AlWw5bl8B8f z0MQpckUhQPD+Pi/hKsdNJuu19H3Si/cNR76zY7DDnyw9uQpp3xi93Wc+HvsuAHlTQPPw5up b5tDO/UHPqLz8P7oWAYSi3M/ztFv2ViK8EQcU11hisN33oi+qnGw1x42JgwW3Qmvmy3XfQGj jGlKPL5Xsl0UFCV6voMnIwSvaUHP7bQLb9fSP6J1FKpm9cgHWO+zUfX2ZTExL0yuSX7zHFNg ZduFg18Vb9WeDnww8KnFhiTx0Bmss4SOxlOZ0j1mq6gwg2ZOsnEX7Mi5Q7915ojiiJwtAUTy DF3LRV0vSAc+f+9/5cy6C+uhII52EzzdEb8gV9j6S/U0b9bJdHscj+iKcaWMq1TtCPNwH+z3 eKvx5akr+NgZu86LoixIjId7hng3Cx6aWNPTXL22VUSCBdFkF/rl58v3354/vDwcvr9+/NeL oZoIF+OW0pqdeN/CJTVoLeaWv2x0nNQIHyY6XPGUsB5Vwz72jXEN8sgEJxuZTq8hsNuJdvAe Lu9GsFzkWuEhjbxrOJU3S4LlOk83NOEuvrcxg3oydSyN0YMJg2dnzGOulPH/aBoHxgrIiXsv GM0qATkIXZu+FLKWHtLyG060Aa9tWRzy1vG5UGRmPbTsRA9EmqwkqOEpwrYzitHR5C6a3kPV h70C5ftZ2e18zyKzJo740EpjO0GX+wHzdENioTA0BLzOjvyPMQ7Rp7EmW6Jdgmto3tn6Msmv SWSOSwWYyCWnrVkvlcE45ND4xHSqT3mXRmh8eDF/Vq1GPz6R5ImcDrIO95PzKrG5rp8xeDk/ M1YUezlQExdDQ670alZtJmPvqtRm77PueDHTZrTvud7zWNQuletY+8ElVC1n4foHkNOYhlGS 2wCI+oFq06oCoRqaRwV2qXb+skA15VtK+IhrqgtTDwHZXCGeZh6+E0boVanCkIRRb6yJIqil MUXycjQbsvcD/J59Vqad2JUS17JErsRcjwoRtHAq4ZahYAPDdhouQxfNIM4Qp8cL7c8GF3jv lvGnlt2o/P78+eXhn3/89htEjjAjk5aHKatzcPCx5cNp4vj6SSUpf8+HkOJIUkuV58rmwn+L B3LXghHl7Fopl/9X0qrq+U5mAVnbPfEyiAVw1fxYHCqqJ2FPDM8LADQvAPC8ePsX9NhMRZNT PT69+KThNCNIzwID/z80JS9m4BvRvbTiK1r1zSo0alFy3aXIJ/XdTwmn5WCUX+jM4F6wEtHX 1X4AvvmMVWeHgxP4/kFGhbXHy+9LLBgksgx0iFhh0OHP0a7GfSNAwieukAUeegbFYfGsV+Un XCjgzYa9MhNjgg16H16PxNcOZjjtAiPRUR6XDGWwIW2I+Ll4yqHPDBFiyqjeHHcK9zi44ZZj yg1aOw7PoKdXonUpEPSgcQvRCDKzkLeRoUI0Ub0HilE1++dV6yiJfLWGMHBcwMTruHA9sYE+ XgpjsArsiBE1S1wlH3ItGv2bl4NwtW7zSbjLTnXjeKuFJRfWRWR48lGLQIkZFSIQItlRCGDH 0c4er5zKxPCXKYCIncSxoFBjRFM2haoFw0JT3YDAoCxavjRSfXSdn/rW+NYwR6NxwARs27xt fYP/OnCp3vklA5fRi8bZBKQ/42V1dWg0aUb6Gg93BB9cs+yiWgvD2pBX+rw4cOFoHHaRbsfD kcWBoauWswWvY4oUoLm3dWHUFwI7BKOjKaUGo/cZ4yuTbsUmPizxcaUWlQHEWn54/vDvT6// +v3nw/95qLLcDGyuLPdwzpdVhLH5Lhyp7DqKNUb1WzeO85AHET4UNib5fOBuSd1Nc6i2AdLg 9m5a8/XihlgvtzboMWvr6QZP/j/boGmGvyHW+1YNStPYDelG1Mqnu320KjnMZthIZYVprEew cgW0RxNx/SpCv9B87LMhtlXVhilvbJBPdDwQUwq98kZNqg7L+pDHvvokT2mUPhuzpkG/YnbL OM+cN+bHkp7LG+DzRJmlfFvniygqeAkVdJa2sq9ffnz9xOWrWUmUchY2/8BKInMGBc8vdf1k B6DXyPz/q0vdsF9TD8f79gYheNeFpic13w5LLn/aOSPg7Fl36nouWPdP2hqHcPftYHkBuZv5 LAcP5Fy019m79hKx934zLvlW7VERouHXJG4uuITc4IAUJDEkqy5DMB8ZzbWwbGGWZKy9NKov IOOHjGGsk7qstghTUeU2kRbZPkp1el4TGfHPzud0y4tOJ7HicVurFXpPbjWXTnXiOxl5wKBM tOkuYAOg2dkA2jIGZi9ILy8fsHy9lmwO6caFzqbtUX9HUHGpVoqQ5qQzKtr1LcS31IlXeMzK CgG6MdoMxjeaoRsX0pLI7paxvzRYsmyopiuBe13dEEjUwAoHKXvnAr5FlMOLtdNg+tpk6LQ5 eDmK2VQutdhA3V12nj9dIBiABpBsn5hnyaJFhIsKZnUl1NLRgwRiCRqNgNZl6MjVrLeIIn/x 40hzD7nWXN1S1mrPsQCIK5yj6D3tWZwM/5f/IoxPVIOdlaZNLwgi0BfCkIuLbu+LX+OdkT0a 8FZ8kTmEtTCwM2E9edQyBeBCfPQGasXZGDxhCTNCCR6qauGIS4oH/JzxE9Wj3AP9kOWBZi69 MMNpU2wOEmGb2GLmCAp6yvUigDy0TWHaRS7YlfAh4nCs2AhzuuLm/jDWZsZM5F0qBpEWnntB Fv9T5tqrFSmykNZNrhkhfJagZdf03Ldi7RpaM+NDVgtHQnA2fTtRNlT6kakMlvQ1e5A2VL99 /c61gpeXHx+e+baZdZc10GX29fPnr18U1q/fwLTpB5Lk/yo+pOYqQoRWwvrMHGYLxggaAlZN feHi0Yi1m0jP3krPupyWdtsBVPDSXRnzvaakrl1qzWD+NAOi9SiqfRnVc/+7ja1mAV12onHg w3NbhrUcrVH/RcuwGM7TYciuLMc+jrUlnyNcg7wWlT0ghvr1w/evL59ePvz8/vULyC6cFAYP POXDs6i8KoouX/bXU5l1nb1swXdaXTRjYn2DU9haxAWwm3vmkx2NtNY4lN0RTsecYkObyWul dc2dBW2+oyHe+9WZj+x6AsvJZboMtEI+CzBfu+/XkdGJxHcQ/fDPQo1X7CqeeB7qb1ll8f0U zxwQLkKiy9oC48egK9t553s7JHdOR0s973ameDvTo2iHdMV5F/shWkGO4K6mV4YoTK2daUai yOEoeWGpssh1uLXwHPLAeQC28nB9OcODQi0smcOFy4qzMKrCwG4bCYR2Y0oA6RUJRC4gxoBd UO0CrBUFFPlvDBDJhdYegBgb1wLC3WIrHPgH7gL9ha2KoAE6NQYfr2fiGy7udUwPYq5g45g6 AWeOoR96jvYOdw5/uioL/opzY4nCCrVcWznGwEuC0a5bTpIAn4t8j783BuQ9ulhrrR4rWOKH O6zHOBKg0Wc2hjT0kTEL9ABpeEmf2x0pTqAuLxqrXDjUsVMuF1tR07RTfw69EF17ajLuUy9F XSqrLGGUEERmBCjyds6c0ReRGsc+SBz5hgmyliyI6XjEwll+e/Ob9ujAlhW/NyRrVqd7PwYv IFNOj3QQzmCtjLiE7sfpvc4BjiTd2585A/g+LMA9KsXO0BuL4MJlqYQLCO8YHR/Eob+QO3Ch yxAHQy9G232G3s5dcJlhPBSYN7p1XepmxJ0iKmyRH/wXbSYAnD0kQIegxKdjiDtzXxgqvpEj 8lk/8MU4hbGNYVHsx3aLAz1ENhKgpwGeTxq4ykhMnXslO1P4aOGcLFJgzcPB6I0JzI5DBQb8 dtaMHmuSM/MUUkHwPlvRvjjWBE0ujP0I/1e+vkSK7stZw3BsLw79kbE60NyPqEDsIb00A65p sMD35xLn2kWqzeAKDCTEtlygR1ibg1Ugsc7mABoICyLUoYXGESMiGQBJjIhVAkiQenBAvBLH 6xEl6NtojSPAc+WiPaINDFwE2fnI8j2UZJ8meyRFdQ0Dj9AsQPY2BcSlMZUBXbtXhtAf0RV8 Y7jbEpIrz0Z/h7UHC0kQJAVSPpPSJJaGI5hGdcmJH+ISl3CyFTqCFiw8dRrhwdwUBqyxBR0Z W0BPkTWO0xPfOvVdkLurOTCEPjYoBXJPRAKGHbJ+At08l17pIc6PTRhBRzYNoGObA6enmH4t 6fionTF0wIKXNw+v795Rzl4PJ6sh95YZYEiQASjoqaN3uHR7L0tG0lS9kV+A91WYejHSP+/F CdQ+7gJkvQPBM4n2WFWEt5n7ypZ0SHP3JC+OsTo15JJG2DwHIPUdKdIAGR4SwFbsjkDUuvlN 0XKvqh2JaUnkVpuRPkcPvjbYuDsSe++xJ91Jomsy5WRdXrnQXDl8nJlOVDvk5D+3iMJDXzTH AbfM4Yw9waSVC+T4Wc9xPsm3T0u/vXx4ff4kamYdE0JCsoPnbWZ2JOsv2FousE6z7RGkC1wf ba0mvrGozrTRadkJ3rTpabMT5b+eDEYZMNIkXo6kN6taEwi3gF3WAdr1bU7PxRMzuyATPiJc DT9lT11fMOw0FlDeMce26Y2gJht1KktHygL8LZT6dxVVkanu+gXtPa+03cn1gfa4c16Blz1m 6Cigqu1pq94BAfVKr6TKqdk2vGjx6NCR1/mp0D/gRqqh7cxcrrS4ideO7vo+9S5zCoApRKjQ S6JD8f84e7blxnEdf8V1ns48zI51tbxb+yBLsq2JbhFlR+kXVSbRdLvGibOOU2d6v34JUpJ5 AZ1T+9IdAxAJ3kAQBAG1mt/DVY35yAKueUiLbVio/XiXFCSl685YcxaNSa5FYKKtuiwpyj1u +GTokp7ik8i4vDvmsZjTYcHu8zhBBu53MiN5+LjOQrKVoXXC55+2PtKoLiFfipmLsqDSKDEt oXyXNSmbD3KFRaNNnLJuEszjka3EsIAXIXQeSuJQAJtXTZU0YfZYtDIDFRUcWRSjQMn9X4Qj TsUimg4ywTFRWiuILCzYq8aIKCyAM1ErE1NpRrtGphuehipAyLKrJqliiCYJTaub4pIMnAsS Tc7RGqoMzbXHJo0YL4EtSXhmHJJUMMtNIBBcaul5WDe/l483qmjSfSnXQWUFUVIJM/CWrklT C5ttvSPN5GsyfSjCzfNnBztpVxFHrfMhTfOywf0qAN+mRY558wHuW1KX0O5r40YI7yiR9DGm O6q6jnkus267W2ndyjERbVqZD79Mu3FW8TEfLzqRDX9MP6PoJ1OV3B0Cc2TgC0ByL1TLmYLb GAqHW0ulcCnujPTZ5KciViBwWW6jVH6Wcu1owGuPdpivSJlLmdiYY0lWpUxze5UpiwIJQMUS O21D0m2jWCpGLpPn+pF6NSyKcgdJlorkAQvIxXPcHD6e++Px6a0/fX6w/h38F9QxGlO1gW9m SjCHfaBa06ogCxXkOxgkgliG5KSm8ls2G3QtDDimTu2iJjPXHu6akuyoFCtinhvvv20RzQfi OiFPHxfwhLycT8cjOHqrKiobFX/RzudD50sstTAdKNzASzKg5R5g0BreedGV1zUNgm0aGLAx fJOK5eOsQtckQ6C0dvCekrL+ycgsbMBxQEaX7c625tuKcS/NxZRUluW3A0LqjTUdIfDIMHcI JBmGRC1IV5a3u3I3dqXEzM5ybB1KssCy9H6fwLQNpYyqg9D34cG8VhaQE3WhARCeG7JXYuJ0 GtLFRcenjw/9uMOmZ6T0NPOcFFW9HUsoplA1LPQ6q6eg+8V/zliDmrKGdywv/TsVWx8zcEGK SDr74/MyW2V3sN47Es9en36OjkpPx4/T7I9+9tb3L/3Lf9FO7qWStv3xnbnevJ7O/ezw9udJ FQEjpSpDoPXp69P3w9t3IVCXOPRxFIiGbQYD1ZCrJWIlaWVKp8BWY1zI++gE7DZhvElwPfNK BHnGTNOTDW5cR2rxHPHFh7x29NMYAtTXihs6z+12fLrQDn+dbY6f/Sx7+tmfx8HK2YzKQzoY L704DqxIyPxXFui5k9X4IKY9GiFs21HkMYCH3GuysAfEFz3KaP7dxnHZOiOqfeLKRVgRjWdb Y9ce2eXBFJ9evveX3+LPp+OvZ/Bnh96anfv/+Tyce76bcZJxP59d2BLo357+OPYv2hYH5dP9 La22EFrwVsttvOVaYVGqN0r1cp7gmm/0hGlq8BnPU0ISsD6ttb3zWi5rQBmj7gJsIWxTqlQl oaJ8DFCqrSqBLieMnKNPQmnNnDA5yQ2YNG8NmMGcZMA2yaYO9W1p4c9RoL4VTAjISFiXch5A kYDPf22MUVrzOoBJyKYeuiVwp2xlC+OO2mM3/ERwwxs3ZQ8ekGFaR5Bk1cj0SFffOZaFRQEQ iFRLmoCKto5oyBcwD1t64NwmYWPgEDwM6G4YJVmiBknFyKOKaha4W7JIxa1mXY77nQmUSV4l ZlVzIFo3cUr7Gc23daXaU3WiRvsgrcJ7Q/NTPDiDyCGdeWrPmKnoMRdlYR1YtmMbmKBID70y E6cgexdqakX18FUz0t3uKxIwj1Zh0VUxbg/VSW+zfJfJMbREVLmCUDnRl/Mtj5puR3vuSzp4 nnqbnbwkC+kGVsEFrgHX7thZEm9JEe7zrzqiymxn7qCFl03qB2KkfwF3H4W7FsdQEQenWQNP pIqqoMXulkSicJ2ghQOiq8I4Vg89k8BL6jqExwcZXeN4EY/5qswM3DWYR4wkPFZJzZ5q4d+3 VKaiaVNFqfcQ4oKyrNjTJbzkMi/SIvlipUMJUYmX3oKJpssbXBKnZLsqC0Onk52lquXjYDc2 Ct9V8SJYzxfO3CTa1aRO0yYoWxqQABnsaJqn6JXngLN9tdow3jXobRHnaU+Sjbq/Z8mmbMDE bvgqUzWGcWeJHheR76g4FmpIZSuNTZZ1wLK9JcnU6cIut4aYZSLTDN7la3rOD0kD8bk3Nzb3 lND/9hvsWoK1Tjt9U+WyiJJ9uqoh4r7hs7R8CGuqWNZqS+EsbDSBEKo/scPyOm2bXZ2omhjY wtcPci88UrpWMVh8Y73WKucBMKHQ/23PalfKyZ2kEfzheHJQQBHn+mjkU9ZHaXHX0UFIeGQh udawUc7nzGrO7yjkqdHCTaZi+kvCTZZAERK/Lf2Hlzstl+rHz4/D89ORnwtx7bHaCveZRVnx sqIk3cvFs1Txe8ni2ITbfQlIBMRV49XjaPPT9WdniPAomGUN/EpsjIdkDabHERFww7HIOOPF IiCqUYJH2NFJsVsDsV7aYXCv+iBbEQfsYAzpil3e8afXRKCb9pXpHfh1YPvz4f1Hf6ZddTU+ yuM6GtP4YUxuQQ1QA+OjKUud8lUb2mg6EkDme1aP8glAHZNBjhSVlsF1hNOymF3RVBswaKut WsXRjWaFeex5jo9wSTdOW4lMqWIDZYPblHc7tfpkY89NDA/DzR9RyXOXWzTRYeKBAhSTprxe 0GkgS6EV1TmqkqSNIjjXzJT4KoPoBpUptspxGiqG0y6BPUsFKhH6eKHlKmlVWKLXXW2pjtFo HO1WRIfmEOpkWD0qbhdGtkbPHzfL1jz2JxI8f3c1+byf++fT6/vpo3+ZPYtR5xUhChdnioRX XwwPc4Byh7m+sxnUbFUeKairC7qdG6URUCRJbpZWXRGZdE7O0pqota53RQTa5tpcrTgAN+rm U8e0jOHJ/CDPX9UvB7O20YYLCWDGeS2vTbqJ3aWhCqSTvcu1lm64c8CNFuDXihwXrzaVWg/A rtEMlMIY8mafwDWvYAcW1vrXM3Lagx8r8b0k+9k1UZUjMNHoxoF1Yy0sa4vSgrRKtWLWoCSJ +fA4eBcR0aRAf3VRtFGptrFDiGOLx9uhQpb0KZD8dTmGNLRCS8lYP63c5ud7/2vEk8u+H/u/ +/NvcS/8mpF/HS7PP3Q3N154DkHzU4c1yXMkx7z/T+kqW+Hx0p/fni79LAczs6aRcSYgi07W sMshrfVD8LoBb9wabtcnTTmI9EIe0obpntdLghzbSvMkJ/QYKc3tEWY4t+X96+n8k1wOz39h J7bp613BDvD0lLTL0cTppKrLbpWV8gE7Jxx2s17zNa3OR5OuQVSgMmEi+p1dPRWdE6D5z0ey muspGjihw5fcMdX5qnsnD4r3DvziYb0wWMd9qDAME2pRmcknLUawquG8VMBRdPsAeZqKTRJr fUdJ9bnJvg/DxrKXwmrl0IIKAG8ZKtyExPFdL1SJH+y55SikLJaCLTkcX+GGZ8C8xYaHuRxZ z+eWa1muwkKSWZ49d6RQGQzBop+prWNAG6NUWwExvOR3uBN4aUhbOxHMrRsEPOOmGQ8ZND0H U2IZmrmEKKxWztJV+wWAntbSypuLjxdGoNe2o2uKjrMtbeox8I02AB413AzYwJtjhaoZeRVs IDvGX3vLu9HdQOCjlm2GHnO5N2GzU9fmkHRaB4rPqwdgZNkumQeeQg3x9WSImAVdWh2xHcy1 8Wocb6nOTC0WHoM2UQhZJhXGmizylspTGT4Lh4zBpn4Zsuwiy8f7WwHmSbG2LcgIL3MEMQr9 pb6EUuJY68yxlsZBGShsFjxWkWLMJ+GP4+Htr39av7D9sd6sGJ4W9vkGacMQv7PZP69ufb8o cnAF9p1caRRzui32GvPkkUSyr67Sr1lbJ1i4EYaFhGBKLxFw/noUj3R84FLa2burvxgihbBn NRPWXqgCYUpuqk4FsskdS868M/V5cz58/65sr7w0uvlskhrfW+Euj5B0BfmNMK+ElP5bpKuw kPyGrlDWT3QK4u7lKh2v7SvSMI5rZtv8kjJvthFmLqVD68qs69+WUR3noaFVex74u9oDzc1u 6VZFC05zYkHwUVe3mD7FUCR9QFlKqzJdGThiuA49VWpUmk0Op6CysMEal1AZ2VG5Bw5/JKp3 grrEUJq7JEAVGh5xHtag7PLAkJrKKiKpagEBSaf+qZsIDCrX8gGQR5brB1agY0bN7ToYFLiN mpKygo0HxVJMU24juZwBOIYL/Mf58jz/h1yq1gwJW+xz2ULAFibFzA5jfgRBzYMv6PF1PfWY Coc4fmqzGIIyaOQhrveamX/yvAVWNHVz/CoIqjyYt/IwACJcrbxvCXFkFjkmKb8tVR45pg0M bgAjSUwgzq9hgEaChYuVzjHdQ4wZAgUif2HrTG8f88DzkdZMQV61+uh+6y/RgO4CRbCUoxZL KBt/RyrRoHuGQEFVAjHpyYjh2cu1UauJFzlY+1OSWTb2BUfYxk9sX/+mpXBP/6CK1uzdK9Id DDX3sXg2EonjO3p1DOM72BgxVHCr2Ny1GiX1vIT5Yj6t4gXVLQOsTat7x8aes0wLcszOrTVo zMyNlUrowWc5x10tRpp1DgFyblRd03VooY2mGA8NDyJ+anvYp0lOj6G3Zmu9pwToUgIMen66 EgTBHBl64uVoJ8VUiASatIOwGjelHQz5EqmGwV2sJiavbnHOCJDFAHAXqYrBFzh8ic9TkEOo F9jUe0spGtt1KF061hjct8RkipLwcAP9Ay4JERFBl59t4Ss+j6rFEnM2YRuaHqsOxu7p7eXr HSsmju3Y+AYBmG77kKNP92SmF0i/wPxdRjbWHI7Ty5Y9aW8yHuUlQeeJHSAylsKl1FIi3ENl IWx9gdetwzxFHY8FuoVr6EDbla/cdRJ21r5VOiXAhDhp7qxFEyI7UO4GDdYDAHc8dG5RjLe8 JfRJ7tsuOpCrezeY445j01hXXjTHH76PJDAbbglgNWy+MPdYhHsdU1ZhpkO/PRb3eTWukdPb r1G1uz3LNKfUafqFMQRd1hHrhv41xwQC2MWWqHpTL5wvekizHE5P4En/9nE6f9GKISnFlSd6 nhpeSF1bcIXpRyEBt8dN53Di09JHwbGNB7uVqhmzYDCbbpFkMhNKeh8wP9fgWb3BD5XxQxe2 KXwoafosHqvpGAoJFFOKFEPTVFnb8aPtABjiiPJJ08UVICdqluZhC2V0+SaXLgWvKJxb4FRz JxjgN77g91/iB2rzVBx8YghjTU9GysfTIEbHQ/92kQwiIXksoq5h/YNXmIfogYnCV7u18MRu rB/KA9eVa4eSBwYVbqb5x9LUoL+7vNwnWgKyAUeSbK3mRuOYbRJWBig7tA6p1cecfDLfQk/s 2sFhDbsUlfwJIIRUupYB1SBT0vpeRsT01IsiwkR2AqEgktRRaUj4wyqJUixEhURTJI3BwRwK qHdoNAbA5WvfllQ7WMpjZHfkG57W/drxQ5r3PCkkr5QBrIRWV9ErCJtuME4OJCzPgJGPLs/l DJICeEx0hz0dvdLHFb4C9syHDJqlX+5BMOSP05+X2fbne3/+dT/7/tl/XLDIyV+RXuvb1Mnj ypBbjTQhFbmYqWjaCIQuGGFdlVa4tOA22i7K0HADD1TXLNhN5xgn+Xh6/mtGTp/nZ+zWGLI5 SE80OaSqy5UgDtLA9pxuKHbkI7tbZTFHSVBSR+PIDkB25QlvaGirGt9diYsb5W/6MEyzVSlF ZhxfjXb5FkuUOe5PyldDQZoh6WpdpL26G62CusWrfz1d+vfz6RnZ1hN4Rz+YtjRYF41ZNob2 IkXxKt5fP74jpVd0q5W0FADAVo0/4+BotultmCMpBWC6HCMbxIHgqSBzMe0GkBEF3N+nA83p 8+3l4XDudSVjomVMTB+U0eyf5OfHpX+dlW+z6Mfh/ZfZB1yc/Hl4Fi7VGXH4ejx9p2CIyS7e +w88Ymj+HS2wfzF+pmN5Uq3z6enl+fRq+g7F8/ewbfXbNVL8/emc3muFjFrILo2iQflCPS++ KosVdviPvDWxqeEY8v7z6Uh5NzYOxQuyC0JN6fk12sPx8Pa3Uqasp+2jnTjrsS+muA3/1tyY FMMctoR1ndyPc2v4OducKOHbSWRmQFGpuh+DXJVFnOShmNNHJKqSmsWyLyJZHxRJ4KrOmJJE pITrIlKF0deUVUhIutef741N04IDXHthSB1zvblom+gaaSD5+/J8ehtfh2vFcOIujKMxU9D1 kmNA1em3skBvWDjBmoRLN5DMfQPGkA5swOZha7neYoHUCZ6tjofbl68kBvPyQFA1hWd5GFt1 EywXzo0WkdzzRIPQAB5d2SUXIirna/TKUdz+UlCWmJM2BuuiFQqWDjgyXD3ECVhwzSkLcIRS Krtbp2tGJYOHi9UkRjnkf64Fz33hG42U1UpgDU0ktkhCxkAgcnEUPJJj1VDWxinOpfzzc3/s z6fX/qII2ZAeBizfRsN3jzghhmgYt5njehpAjSA+gvHAxgwr3koMADlc8whUomyv8tAK5uhE pygbNcNQhCt6H/HfcgzeASaFiFzlEV0Q/OHrlTERKoeblDBK4OU4tA1sx6FjYf1PZ20dz6VI shyEh7NnODQOqRAkiLPmCFfjdy2Jl8pPlXcOxAP53rXR73eW5GOWR47tCN2d5+HC9YRZMwDk zhuB0iQAoBQxkgICnmlRcJ4EByPc/MRx+FEzbyM64phNmmJ8W2SYRKHsv0aau8CxxACaFLAK B+k5qk/ysuNL8e2JqmIQ1uDl8P1weTqCYzHdYS7SJhPGPBY0BMVppGTMYbyYL60a45qiLDHw Jfxe2vKyXNg+dnMAiKUlfWovbXEt0t+Bwoe78NF+pSh/7ncsYxbdpmt65k3w2AwSpUlWLOgE kDhZ+EFnKbwsAmziA0Jp1kJ01qK/g2Ah/V7aMn7pLpWqlqhXVBgvXV8qKmVWvVB+ahK2lT1v AYqVQZFBwD4RBo1ZTg1fxOESBM6mCsXM9EmxT7KyGvNVllJowsB1pOu8bbuw8LXDr8INNWdN ZLsL2UUQQGiwWoZZCqPIAZIiA8qNcp8o4SwLvXvnKOlCFkB4mgzAOOKtP4S79cVrlTyqHDpA oiyrHFeMlAuApSXNvzwpum+WsauKcLeQHAdJzNTHvIxVP8OGTZh5YEU6TMx3M8JcMrctFWzZ lhNowHlALJGJkTYgc1mcDgjfIr6NL3BGQUuzsLHmyMVSjNHOYYHjukr9JPCDQKuccE9NU91N FrkeOr77tW/NO2kt7NMKXiNCFF9lXQ2nrlYZtKv0viWpRVm+Pp/eLrPk7UUQ4KCM1QndNoZo JXKZwhfD6f39SE9uyhYQOL7g6bHNI9f2pO3l+hVX6X70r+xBJ79REctqspAqmdtBCxCkFEMk 38oRI6gyiR9IKhP8VlUmBpNUpigigbw60vDeECCKRLEzHy8SJJiakAZCsNYpHDQ2lYNrUaQi Bsz+W7Bs0SHWeoxfSh1exkspOoxDvkA5DvKgTXElXo4XqKCviv81XCFavjhzcjIUQYYO5wYh Uo3fTTxdexlOBaQavtvuVmiD9SKkU0WjVIvjpPFWcGwwRyPDsGzoCnri815SdYQ91Zv72Mtu inBE3Q9+y8dmCnFt/Oziua6kNtDf0kHG85Z23a1CMXzTAFUATq1U6aHv0CnCt91aPcR4fuAr 31OIUdvx/KUv68UUtvA85Xcg8Sgl0mO/XaXKxWKOPe8DzNJSVERnjjlQUXkUzIW9Jq5KSDAv MBoT15WvVug2b/k+vipBBfANIVty33ZQ/yC6X3uW4C0DvwPbkrZrdyG6kQJgacv7HuV6Htjs LcCrDPa8haXCFo4szwaob2EM8h0oHm5yx8u4WwuB+2VSOfDy+fo6JvaWNxL+NjnZbxLh8Qdb eNw+p2RJVjHcFiA5x2ok3JKBygyNN8bxGoK29W/PP2fk59vlR/9x+F9w4o9j8luVZaNZmt9U bPq3/vx0OZ1/iw8fl/Phj0+4lZRFwFJ7rSJddhiK4O42P/6PsidrbhzH+a+k+un7qmZqbfmI 8zAP1GFbbV0tyY6TF1UmcXdc052kctRO769fgJRkgITcsw99CIB5EwRIHHdvh98TIDs8XCTP zy8X/wdN+P+Lr30T30gTebVLkIZlzQEwlyxmwv9aTfe7X4wUY5Xffr4+v90/vxygLd0Zbt3V jAY0HcSNqTdVB7K4j77TGdiTKtyXlXd1BjkVR8tPV+M5Exbw2xYWNIwdHsu9qjyQ6ym7O8E4 GyRwxmHJebu6KXN2t5EW28mI5ihpAeLxZn4NOlslo9BI7QwavURsdL0CZWIksQJ3oo3ocbj7 /v5IBLgO+vp+URrH0qfjO5ftltF0OqJKqwYwPoy3w6NB/QlRHhNQpPoIkjbRNPDjx/Hh+P5T XLWpNxEVhXBdjwnnXqOOMmK+LwDyRmN5NbKQ2Ojczt1YTnR15Xmyfruut6LsUMWXI5YIC749 NotOfw0TBxb1jl5NPw53bx+vhx8HEPI/YPyYVI/7j11GtqC5C7qcuVt3Onj3GY/dxHU2WpY6 lvu8WrCsah2Eb5QeyjbxJt1T8SPOdk0cpFPgMYQZUagt3TOc3EIkgb0713uXGqkwBGUXFGHd Zra7NqnSeVjJisGZqaR7H6eEu6JQ6Ol5wDhrHb89vpMd0k/rZ1jJE3oJocIt3oXQBZFMRmP+ jdmxCKAIq6sJW1YIueJpDlV1OfEGbnv89fhSZu6AoJpgkEIZC9JcBNDLCfie0Fu0AP1tZww/ n89IAavCU8WIXk4YCPRwNKKp6jrlpErgkBrTfKYM4xHpWEPGHtnO9DY8YUEqCKYoc+mW73Ol xt6YG5IW5Wgm85G2UY7zcl3azrU7mN1pIJkfAX8Gbj4aWewcYfIzQJYrtEAXisqLGlYI2aoF dEY7ZtPsXvF4PJnw7ylPH1xvJhM531ndbHdxRcXvHmTl5erB7Cyvg2oypf7jGnDpuRNdw7TO 5szSXIMW8lU/4i7FsEOAmc54ZrRtNRsvPCkSyS7IkinL+GggE9LjXZQm8xEPt2dgYq7lXTIf c532FubJ82xz2pYxcSZirLPuvj0d3s0jg8BeNjzlmP5mF8BqM7q6Eh+g2uesVK1YLEQCHngT ohT8OUetJmPKyMiWQ+qoztMIk3MwKS4NJjNvOnLkLl2+LJJ1jTuHFiS2bnmt02C2oO4aFkK6 oKLogYSuLVWZTlgYRw63dgrHdUdZZ24nzb1ZFacwKda1ZLrdU1mGEbZyzP3349PQgqL3W1mQ xNlpxuS8JOb9uinz2knfRM5boUrdmM69+eL3i7f3u6cHUJ+fDrxD69IY4J1exNlRr0Mbldui 7ghkYza8q8NoHUmeFxIlXUDoq8mqa7shN7Y9/Z9AqtYuLXdP3z6+w/9fnt+OqMUyqbnf578m Z5rjy/M7yCjH0xN/L0vMPPrUHlbjxYi/gMymPOawBi0G3lM1TjIiwYsWPJPZVcx4ws45BAGz Hfj1eMRd4OoiQc1EXDAD3RaHBKaCW4MnaXEFm2n0j0o2vzYXDa+HN5QGBS7rF6P5KCUx4v20 8Pj9OX7bKrGGWflzw2QNh4V0/IQFyImEbzB5hUXZXRcj5hMUB8V4SAEskvGYXpjpb+tp3sAs ORqgwMxlm6O0ms3FMwURE/bw17LkoQx69WxKPQHXhTeak6bdFgqEz7kD4B3ogBb7dCb0JKg/ YW4Md56ryVX7fEoPZEbcLpXnv48/UEXELfxwRHZwL97qaAF1JhrgJHGoSkxgFDU75qCV+mNP vB8tYpohrFyGl5dT9vJYLllK0/3VhCXX3ENLRpx8wYWdSacK9/LLbJKMnHzsZIjPDkRrKvz2 /B0Dh/zSKsKrrqz7f68aewM7+RfFmuPl8OMFLxbFXY1X1FeLicUb47TREYTzIN8WYjYJsi/r KCVpvNNkfzWaj6c2hMY7qlNQhebWN3O6quH8GfC20ihRdMV7nvFiNmfHldD5jj6rSaBZ+ICN y7gUguJQNgxHnIlxVkfydQRS4FotctHKH9F1nie8BWho6rTJxPtlUB1CpA3G3q3SNKKZV+Hz wn89PnwT7DuRtAatZ8repRG6VBvX3FQX9Xz3+iCFOdulMf4Q1OeZ+MMhG1MWkwg+7OgQCLJy kiAIPcaWtfVTHV1Jv3QY4a78cnH/eHxxQ/IBBv0NmGoA5cViZDoVossAOvtQtgRsHMsXJTy7 XsIBC8yV4os5AeFQiGo0lKzLPEmoAaXB+GUAtfrtWzttjMEbT7mVnPjAkGDeeCdkkGHi65uL 6uPPN21nfRqo1jWJB3MmwCaNQbMIGVqHh12l/Dd+kDabPFM6JnaL6huHBbU+mrAXyjLKJK8g SsVrpBgTjJ+uZ4ZVyU6yOkYaXFJxul+kX3j8PNPNPYyt0FlEFnvVeIss1dG77X71SOz4UK+0 2ZOplP04VYWOXtukYTqfizINkuVBlOT4MF2GUWV3XTt7mNji4sqwaGKZiyFVm5bT6Qkj0jE0 Pfsmuzsh2SojP0SjeTncXhoQ5gwfPJ8PApKiT0FWHF7RGV0fuz/Mdb7kuXWOrN9zys5jNHU2 jXp6eH0+slRNKgvLfCCpY0dOpPPYz3ZhnEo+OKEi4TN0pB12JiHA8EqnWevri/fXu3stqNmc r6I8Ez7w9q9GZ72KOk6fEFBDwxxmEaXfUWXLFMBW+baErRaY6OLi3VlPtI5UWftWMh6CX2Jy KdlBwrA7O0V492rhDkFX+7JYEb/h1iGsAA2/sMxzHJR2LiOvdFBQk67KnrCytQabIthJK7yn aq202C1Sj4yDaDoawKUqWO9zT8D6ZRyumK9K25RlGUW3UYsXGtW2pcA7DSP8lVbRZbSKaYTG fCnDNTBcJi6kWaaRM1wtHPs1NFYdSd85CTnUjEYtt2Klljtrh6axhuGjy1faZCbDIsG0uXZ5 llSCwHS2ElzpHA0cVaFzHIf4EbpocGAeUM0Vg7PCRO1P7zA0gLDjioURiVW4urzymNV1C67G 0wGzRCSwnXcYEr07xV0pNac/x9ImL4j+UMX5nn+h2GQFHK2SODWZI07MA0DmPAvqUjbF1rdk 8P8sCiQ5A5Z7VlPxC+RMTDAUwk4g2kzvtFrDGQRnl04hcpoMlpAOv8z5SvNnaqjtAGrJycYA 5fgdtBZ9aFLvtQC2fdRcY4JwE3XwVPROoUINyvSyQrN0FugRQHEOksUJEu1rr7GC2BlQs1d1 Ld8iAsVETlMBmGlDZfgW0GBYdVhcQeKiqijYlnF9Y2EsyV/DNlvM4WtFDvjsh+zaAL8Hg/BB famvR4/K2DGMEmCoO1MPBFLq3NzDtQ9vnC1zsSAzejKKjgWR0k8E3YiIg/9Z00h82+oBfrdu y82OKOMI/7LNucPFnrZLrBcpxMxviMgz7ZJvxVMkmDIqFE0Wj6hrVWZ2G4bmbbWsPNa7PBiC NLkXsDiTPQKD60ojZwhM1EjgzJskZ0FVKFoceb9uV89PGyKt+x6nV5ZmSSu+/nuKcpuB6A1r /qZf9Kf3KU00HKXR4FUFq0q+vzjVEi0xmU28lPwVszixB3rpdb09HaVeO7zyALW/6DcF/90v l15HdXZfaCIzpANJJjSFNlYeEixNRTqfeJx9jgL3JcdqESaMwBvdQToMySw9sQ+xRNytNjs2 MBOSHk5KcYDjJNJRGPBmlLx6ZCF6XtwM4KFQUI3LG5MHTgaD1LiqGA6XSs2U+B54ju22FP42 BlklQ8evTOHByQrv48Wc3gkMaOA01zjtTi1VquzwMx3bo58YY0XHQ9CyAfpoMVUc0260hMiv rHgdPZ2hGOq+wdYgeJPKlynw5bEN8KzmBTVZH5hIfllN2W40ML5BYUAanoMlkLO+tXFVGBuF iUrUzQAMmEUYl7AzmpCyc4lAJdcKVMhlniT5NeOnJ+I4CyNpexCSPcyy7qRYWxrBEOXFTSf2 Bnf3jzToxLIyhz0V+w3IPQ0cinVc1fmqVJKO3tE4Ibg6RO4jAwE9fyCuiKYS0oJ1BsGmI6ZT 4e9lnv4r3IVaHnTEwbjKr+bzkcWTP+dJPJAn+zbGZM0iahsuHf7ZNUluhnmNzKt/LVX9r2iP f2e13NClPiCIqFzB7xhkZ5Pgd5vvDbhtCGIE6H3TyaWEj3OMfoK5nT4d354Xi9nV72MS1ZiS buulFOFfN98SYAdq+Hj/uiCFZ7Ujl50E+3ODY26v3g4fD88XX6VB04Imn1oN2gz4G2kk3vVS zqGBOHageoA8Qb2jTDCadZyEZUROgU1UZnQgrMv5Oi14mzTgFwe5oXEUC4aNUb2es1jI6+0K eLQvihZplC7DJigjRUPXm39OYkp3++cO80mpq0yoMxNljPQ0LzGhicViVSgDmvKasOulIyhF +lyVpaS1JUTCd5Fs7RL8aEgB8LsmnWobIv28tIW6DtIytBFVOFrMNRzgkeRCwQirbZqqckh3 aYsa1i0NCZGr2jS1w724ZaapBqZtZchyAB5OR9Z8G4nKKOHdIgdlv1rzQexgRojSbFu62WRU 5gh0y9VXamkB0k+24hnebYrhJGIiJT4bYpTMMw1zhO8egyN47pfJ7VToSnKbi6Xtb883+7aq 5XwKPcUU8z7t/GQD43Q7EBmxo41SP8L0zGenpFSrNAI5rj34odA/Jv2Js7e2XRpnwMKY+JNa m31dWL/5ku2nFg2A5s72b4FnYuu3dUl8HXPjMUnGQPBwSvDCp9s0g7/FKeupTi3tkVOKtGsB 9DoQ67ApF1PvH7QFl8Gpvp8WliDchpw60R3M55pD+yXRn2mWm2nWal5P8Ok/b+8PnxyqLssq h+vIbW7Hzrx4tBSyKNq1nOXTboGwiSQY/kHG98luMuI2GAFOb5L5VECnao/ZxipQGT0BXZz/ dTsmPcVpR99Uu4Hct9bOMt/mOGIPdWfuj6Iyt7ZsB3El+B4zJKj0BLdxIRQYwKGNt/ta3Eri NK7/GBNBMaqv83JDZQ3p2oUG24WP00Ijki1Bd6JxA6IxeTukmMvJJS/yhLmcDWAW1K3MwniD mNlACxYzZhLHcQPOehaRZEBmkTArTwsnufxaJNOhbs1nZwqWws1YJFeDfb+ayBEoOJHotmKV 4w2M/BX1CufturQ6DKohrq9mMdjbsTf7B3MFVEOTpaogju3R6OqVTb4ohWyBQCmGprnDD3TZ WrcdeD7UVDmMC6UYcF6h3ZVdORiJ5IfPCKyGb/J40ZQCbGvPKQasBpFDybeXHUUQYe7HgUYY gqyOtmVuD5TGlbmqYyXlJuhJbso4SeKAtxgxKxUZuFPsqoyizdlWx9BslUmCYU+RbeParVQP CLRY6k29LTdxtR4oFG8V2OVlMpBFOYsDK9Nqi4nz5voLVVnZA6AJkHG4/3hFU1MnXPcmuiGn Bn7BQf1lG1Wt5MtkjqisYjh9QCoGwhL0EfE9z9wDR6EpmwZLi26acA3KWVQqRz9jVPoSNg7O UHX3+hheu9IGa3UZB7JQJ70BWCimQ6tdBH+VYZRFJk0b3hY2GKA64EGJHCJ2A+GUsIQifBXI S3CZl/pi2piyDJjLwIAEujxMuruOkkK8xO5unk5jRLORJVX6xycMHfDw/O+n337e/bj77fvz 3cPL8em3t7uvByjn+PAbZuT6hivmtz9fvn4yi2hzeH06fL94vHt9OGi7bmcxrYKgKZLtCu/q 63Ib1Emk+tjRJhHuxfHpiP6jx//c2aEOYnyohT4GG5h/O7LtuRqGLvNlYv+mjFgWgjNkOOn/ Qzt2GFCpGjJAgt7ptxFYRv0UiflXOlK0uiGUdIsPDGaHHp6qPt6NzRG6yvd5aS452N0HbOi8 vy9//fny/nxx//x6uHh+vXg8fH+hcTkMMb4BKRb+iII9Fx6pUAS6pNUmiIs1tVGwEO5P1ixF MQG6pCV97TrBREJX1+saPtgSNdT4TVG41Btq49KVgIqkSwrnj1oJ5bZw9wc6nyd97mH0TRhX ygelSz8iS3YvnDzagyZqm1m0NKvl2Fuk28RBZNtEBrqtLfS/dNu2CP2PdGJ3w7Wt1xFNPtHC uXV8C+xj4Zob9o8/vx/vf//r8PPiXq/5b693L48/naVeVsopPnTXW0TNr3pYuBYmIQrKsJKi CncrPXVHCHj9LvJms/FV13718f6Inlr3d++Hh4voSXcC/eT+fXx/vFBvb8/3R40K797vnF4F Qeo0dxWkbr1rkBOUNyry5IZn+Op38SrG3E1OaVX0Jd4Jw7RWwAF3XS98Hebmx/MDfaPr6vbd iQ2WvlNTULsbIxBWakTDJ7ewpLx2ysuFOgpsjA3cC5WAgHNdqkKYdhWCCFlvZQGwayIG93aN eO/eHofGKFXuIK2tlDpdc6EP5yrfWXlsOq/Cw9u7W28ZTDypEoNodkVabaW7KUrmNHy/F3m5 n6hN5PlCbQZzhoNBPfV4FMZLd4V0mLatLmMT20I2gsNcQ0kv65HyT2ZNUZydlTSGLaMdDs6S lWkIu3C4fsTzqBgnhDeTbitO+AmNydFt77Uai0Dsj8sMgIfM5hL9bCzIAGs1cYHpRGh9hTYU fi7d8HVHwaoc05i+Lfi6MDUboef48sjsYXvm5m5wgDV17JSnsq0fC9RlMBV4Achg10tZbeyW p0ojUIGVy+0Uam9W9EWCc1k0QudOOcY9hMOWQ+fwZq1u1ZlzuFJJBaeE29j2+JBmLorkV58e XxaW849Dkp7ZcHXkjl19nfN0ahzeDWvrQRI8/3hBT9kjDYPZj55+YnFKwjcwd7oXU8ndp//J VChmunb5Oj5FdI0r754enn9cZB8//jy8dnHipJaqrIqboJAk37D0V11GJwEzcIwYnDq3eDWJ dCwjwgF+jus6Qkev0ijZriTbSMpGhzDyvzvoPb7THIbb25NKo0SRsJd2hTAmPQ0qNf+gnijT 4nfu49MHf7ToGZtsmkrUm87YmOpt349/vt6B7vj6/PF+fBIEBgzQJLE1DTfMykW0x2yfVfEM jYgzbMBNyuiQyL/uZd/zJVAR2UWHA53uDnQQ9PEFanyO5Fz1vWAwPABEjJaIBg7J9bW0CdHt RDKUI3hVp3amBgdr1BapdIPHNo2mZ5QV3ZAYtu7e3ew9qgmybDbbyyS7dBDeXTeKHQjWUVJR /xr6Wyt7HUFVahntMbGFPKhBAALFuUNHj02a5Ks4aFb7RBgZVd2kaYQ3lvq6s74paKzdE7LY +klLU219Trafja6aICrbm9LI8dwoNkG1QGvUHWKxDIniEth7VeHri4xFPRl/fBpENMONwqaI jN2KNgNv72p7VoNB4r5qxfPt4iv6Sx6/PRl3+vvHw/1fx6dvxMlQv2g2dYlPoGF3tXxqh4uv 8BGavgIj3txAkAEZugvOs1CVN3Z9MrUpGhhXsEGrTJm4s3X8B53u+uTHGbZBmwov/+jj4A1x 5lLF4bwpmE95B2t82AJwEJdSCj90pFBlo83RqMWEssy6fdiEEeZ5JAusc9wGAToL8Pq61G6/ dIlQkiTKBrBZhMaTccIsM4K8DMUHIhiTNGqybepDc06rrncjD2LbIalDWWA4q9bYItCAi32w XmljdnP3SyngnGyWKDG3HnExv0QLYL+D9MFA4zmncPVHaEy9bfivuDYLn31OU85fNQa2feTf yC51jETOQt2SqPLa2ggMD7POeVwgRhsP8NCnTSfmAnAq9Yr+iYAEO+oVdrJwszBPSfeFKtG8 DIWXhJlo3ppT2oIyCyUGNdZuNpyZLJ2gxFKJU0ulDFgiabBEv79tmD+g+W72i7kD097thUsb s5TGLVCVqQSr17B9HEQFHN4t1w8+09lpoQPzcupbs2KWLAThA8ITMftbEcxsBQlcKzPOLhfe 4eA8DhuQk3Om8VIoigl01zIcVElxfkDUP597YGiHj51KLMcMVVV5EMMRuItg+EtFdBRkL8CY otQGaSc7xrAQzhK16YzZVm5jBDT+DSb5O8Ez3R2DBz68qtcWTiezVoXWGWi7kQEiToVh2dTN fGpYAqkOBidR2jBtrTUwjtUpglkTq+s4rxN2E6crwFgYA4ZW1Soxs0rGWWdQNS+chLMU26Zk QxZ+IQ8IqyT3+deJw56GI+FelkFy29SKBqotv6CkTspNi5jZC4dxyr7hYxmSKvI41A7lcCqS hbDMs7pzrqSjg3DRPwvpF38vrBIWf9O1WmE0jDyxZhQXUoERH5hS3KMAU0a4GnCnKfS6AYlO oNsaP+FmmWyrteUA2xPpl+2URoOAJcTmCLhOqqjrv/9ZrUgwLny5z1b8MOxjiFkSUV9mEqbL 605w6p87O8lSQ19ej0/vf5noWj8Ob/S9mnhFwI7e6DzFshGlwQeYqUu8HWhNE0HYT0B+SvoX wctBii/bOKr/6O0cO+nbKaGnCG8ylcaB7d3MwF16ESK5pv5/K7uy3raNIPxX8tgCbZAERdGX PNAUFRESD/OwlLwIriMYRpvE8NGm/77zzSzJ3dlZ1X0I4HBGe87Ozr0NdIei6wjPkgHkh/TP ua3fe/7l5NrNZq+7P08/P919cbLtI6PeyPcHa6WlN9gjzIV25o5qhOkSGZnWiehoIpICTBrn b35gRFe2xIRR4qSy40W6IltxD4Rl5VEUqNuETBLikP7Zl2H3kteJjI8qG3KPu2oIDw8ZzGFG oiQCNyhSskekAJ61VLH3ix7x0tXl5WW73t3NdAZWp9+fb2/h8i+/Pj49PKM+t1/FIYNSSmoN 16eKP87hBrIf799898JQfTwS9MvMUm2nnGe9hEgsRlbfUZZXL03PDmdGqFBRwdxE1ZKOEpmv Ub6FaS+2H1bBRYT/W9r4zPAu+sxlT5efimNACAzzGxNk0jlbc6wCvsAD1maAMoORQaS60N2r BplXVymrNyvrjGhS1otoJdw2pHQVxoZh5JEn0EWlzO16CWlgcaSh47kqX0aTxgCdBADVzwya OMTZ6H300uxrk1UzsG3KvqkD1Tf8TkTl0ueTGJ+KrrFmcFRxRQKRnM5EENtuvJjQrEAghrOZ 1xcSr4ppb+gidxFWqtMJcuYUSaDViLvH6pl48MrhFPVqrmihGrmyeOl8nBwOiYhjFrHUxGd5 BJlDoAxiEK4JSdZMhluWhkeOnN+1JBLHU4+Bec6j3mY4Z7EdV6CIwxcyWc4pyc5T2kkYnrUc hGj1N6ocoHjSgf+q+Xb/+NMrPKfzfC+cf3P99dbP7qSecwSINYHkHXxGTZfRs1XD9jG2y7uX ywXWrIck8KJpBrxTWvlo3M9LcPQYEBH5gq48tGRXGkd3Je0fNyhAN2T91icBueBmEAt/zTi8 f/vujdHRjJYeS4gyD2Xe8v0lSQUkG6xMJzTzbJmLL/qepwWJ6iXh4PMzJAKD48oJVjKjfAwr 0PC3icks8YFG2+EpwrJti6IVZqpPKqnHVTtEFI6ZePfOD4/3d18R30OT/PL8dPp+oj9OTzev X7/+0as2iyIW3O4HVhRiHart6DhPxSpMpsdtYJZJkQXa+DgUhyISXXqaI34f8Sobfb8XCLHv Zk/61SZenm7f2zk8AubBKo1Y8k7buC0HSDaWDQ3UhH5XFK0eqlsx8YE6/asP+0SJTdTcOIZq 9DLJRcNe7rV8HfzMNlH2K+lgn5WDld446YD/g2QWlZI4PKfG+cNi0ZyW9TjWCC2gkyCmyDO3 5Fau7wSn/kPkqM/XT9evIEDdwNjv19ySRS576y5LVnlwRGfxCgFJdDys4ws3YhHiuMqGDKog ivqXYcTw2RHrzvOOlqceSMKP60V2+WjxG5tMCPnIb70etZ0bkBSNeCgIwg4a8GAQBVhdm1n4 u7eqg2R2JKDFpZlWOxXJDuapjvilU+Y6Fkj0sZKyOyTuwhXoOwFowBu6NnYihHD+Ldfv9Y4c fa3zj0PjndWa312gmQSpB8Tw1mMt2ud56AfSUTY2zmREWE+HJQ087sthA7uWFkYduOJKeIQA z45CQWkJ3idgkiRdRxJt7n4orSxAGTUnkKohSq95yJjZkjS/LjXZFvDKI+MHgj/WHnskBbmj 9fGacvpmv/fNWlF7k4FaN+QQvXtrsmeoGUGkACXHTccbvZgPrV22WEdip89sctwH3bPw+dpl GERbiAewpEB0lyQirs+hOLkhPQ2RYOJl2Ozp5KR/5mbn6LCP6KuvSaWgo5kEzLpHTAQoLZrV REGyOkoeCmBFymYxgbO6xmswNEX5XaFruAgWHaUJbkmUjuC8JsLBaApFkjWCFqZCZ4HZgTq9 KNxLqWfoan5KNVzxBFeYhhgYivuPNRGfbggVlaYnZfTGuaMthdcUjNnM4hy3D7YPXqworuls xz4TLLmdsuWIasjoGmvTko7fYQo5pP+SLXGoVxXeet4Kgd0cteAVrNWZkhF9hhdure30lHeu GV06Y1sRPGIkyXYOJ5IQ7r/9fXq4vzHtQG0+Z5bsi64Liwphw4SLkEBLcvNSDWDD14cyhaCx ohp3fF4UDLmSpI8RYw98C/8Eu0dbexjbc35ovKMg/gzDlYT+sVPQe7kIZFwX4FAlqvyB19OV RvePzQcxtazbGeXxApx2WI2VJfsDyFENRY2kAnfJBSb+aJd8X8pwenyCuA2VM//21+nh+tZ7 XIqLqgaWVa6yymNNFAlb6rCeARcHJsz/QmNRIpGXNAnHR6aupSajV9KispGC+p9rZlnpFq2e i0FKPf9H22eKRepDuM0bP0FGTFA98fDmynEpP1DAYS+LBTRnNmVXXwcTZmJ7gAvvRzdy2RuV +BhgEclnXZFJPY433/Hu32w56YjbswhD28MMXmKHFz18uxpshUvsIGBgfWMWjWWEqqzhrGmX 7eTPffCoycWk/fGh1SoJu/S1OuHHA4T4gctf/UwqKKmPonD/+ovv0fTHuikOOLTBjcNzED+o OL3Ne91h9Xn7UbW5pc9Dc1BfXXjZF9WRMLQzDoRRP0ngQw8c4JAa3mxW1Z12CAMaQIvppnXI eAgtV1aQqUxUuZiFlraV+kITh8U0/HhViaUl/Mpx2JzSrZpojfVEeOCmYefElSV8lvUKfVvC CDewLrtqn4WFmmSzuSSf0SS1Rjxmt3Kc2C89xj9JsNvpEHIo44zh/zwIGEz9nnrv1SmRRWOZ xSBszltH4GZqA7dVs1IrHboJQhhJHTmJ+5oL7Mqrgu/8aCEl5iBNWyx1wOmQ5DtFpX0SsnVg CvD+2GyVfhbfZWGStn3TRpncEtrwL8vAfYGhWgIA --cNdxnHkX5QqsyA0e--