From mboxrd@z Thu Jan 1 00:00:00 1970 Return-Path: X-Spam-Checker-Version: SpamAssassin 3.4.0 (2014-02-07) on aws-us-west-2-korg-lkml-1.web.codeaurora.org X-Spam-Level: X-Spam-Status: No, score=-7.5 required=3.0 tests=HEADER_FROM_DIFFERENT_DOMAINS, MAILING_LIST_MULTI,MENTIONS_GIT_HOSTING,SPF_HELO_NONE,SPF_PASS,URIBL_BLOCKED, USER_AGENT_SANE_1 autolearn=ham autolearn_force=no version=3.4.0 Received: from mail.kernel.org (mail.kernel.org [198.145.29.99]) by smtp.lore.kernel.org (Postfix) with ESMTP id 09D45C433DF for ; Tue, 23 Jun 2020 05:54:44 +0000 (UTC) Received: from kanga.kvack.org (kanga.kvack.org [205.233.56.17]) by mail.kernel.org (Postfix) with ESMTP id 8853D20772 for ; Tue, 23 Jun 2020 05:54:43 +0000 (UTC) DMARC-Filter: OpenDMARC Filter v1.3.2 mail.kernel.org 8853D20772 Authentication-Results: mail.kernel.org; dmarc=fail (p=none dis=none) header.from=intel.com Authentication-Results: mail.kernel.org; spf=pass smtp.mailfrom=owner-linux-mm@kvack.org Received: by kanga.kvack.org (Postfix) id D7A626B0002; Tue, 23 Jun 2020 01:54:42 -0400 (EDT) Received: by kanga.kvack.org (Postfix, from userid 40) id D2C3B6B0005; Tue, 23 Jun 2020 01:54:42 -0400 (EDT) X-Delivered-To: int-list-linux-mm@kvack.org Received: by kanga.kvack.org (Postfix, from userid 63042) id C1AEE6B0006; Tue, 23 Jun 2020 01:54:42 -0400 (EDT) X-Delivered-To: linux-mm@kvack.org Received: from forelay.hostedemail.com (smtprelay0184.hostedemail.com [216.40.44.184]) by kanga.kvack.org (Postfix) with ESMTP id 9B2356B0002 for ; Tue, 23 Jun 2020 01:54:42 -0400 (EDT) Received: from smtpin02.hostedemail.com (10.5.19.251.rfc1918.com [10.5.19.251]) by forelay03.hostedemail.com (Postfix) with ESMTP id 462178248068 for ; Tue, 23 Jun 2020 05:54:42 +0000 (UTC) X-FDA: 76959412404.02.comb87_270ddc426e39 Received: from filter.hostedemail.com (10.5.16.251.rfc1918.com [10.5.16.251]) by smtpin02.hostedemail.com (Postfix) with ESMTP id 0B23730000A9FA26 for ; Tue, 23 Jun 2020 05:54:42 +0000 (UTC) X-HE-Tag: comb87_270ddc426e39 X-Filterd-Recvd-Size: 93171 Received: from mga09.intel.com (mga09.intel.com [134.134.136.24]) by imf33.hostedemail.com (Postfix) with ESMTP for ; Tue, 23 Jun 2020 05:54:40 +0000 (UTC) IronPort-SDR: lt5lthcIpIuBtZoMsan8jVHP6zEgvlxGCM39vNgyD19FzoAk3dKhDnCEE73bLTvR3V/e8/GQNE os2aOSMtU1WA== X-IronPort-AV: E=McAfee;i="6000,8403,9660"; a="145476198" X-IronPort-AV: E=Sophos;i="5.75,270,1589266800"; d="gz'50?scan'50,208,50";a="145476198" X-Amp-Result: UNKNOWN X-Amp-Original-Verdict: FILE UNKNOWN X-Amp-File-Uploaded: False Received: from fmsmga007.fm.intel.com ([10.253.24.52]) by orsmga102.jf.intel.com with ESMTP/TLS/ECDHE-RSA-AES256-GCM-SHA384; 22 Jun 2020 22:54:38 -0700 IronPort-SDR: tUqnCkiUpSRsnBjvRaIvkNfgxJRD+NshQi9PwTYZrJa7iuu6NyjoBDOquVQ+K07/KM+ber5fr8 Uw5tKpJNwG8g== X-ExtLoop1: 1 X-IronPort-AV: E=Sophos;i="5.75,270,1589266800"; d="gz'50?scan'50,208,50";a="263204871" Received: from lkp-server01.sh.intel.com (HELO f484c95e4fd1) ([10.239.97.150]) by fmsmga007.fm.intel.com with ESMTP; 22 Jun 2020 22:54:36 -0700 Received: from kbuild by f484c95e4fd1 with local (Exim 4.92) (envelope-from ) id 1jnbtD-0000dA-M2; Tue, 23 Jun 2020 05:54:35 +0000 Date: Tue, 23 Jun 2020 13:54:15 +0800 From: kernel test robot To: Andrew Morton Cc: kbuild-all@lists.01.org, Linux Memory Management List , Johannes Weiner Subject: [hnaz-linux-mm:master 1/169] drivers/tty/serial/ucc_uart.c:264:21: sparse: sparse: incorrect type in argument 1 (different address spaces) Message-ID: <202006231303.TclCljYQ%lkp@intel.com> MIME-Version: 1.0 Content-Type: multipart/mixed; boundary="rwEMma7ioTxnRzrJ" Content-Disposition: inline User-Agent: Mutt/1.10.1 (2018-07-13) X-Rspamd-Queue-Id: 0B23730000A9FA26 X-Spamd-Result: default: False [0.00 / 100.00] X-Rspamd-Server: rspam05 X-Bogosity: Ham, tests=bogofilter, spamicity=0.000000, version=1.2.4 Sender: owner-linux-mm@kvack.org Precedence: bulk X-Loop: owner-majordomo@kvack.org List-ID: --rwEMma7ioTxnRzrJ Content-Type: text/plain; charset=us-ascii Content-Disposition: inline tree: https://github.com/hnaz/linux-mm master head: 5ec055192cbeb593816c9a33b97d7d5a0cddf60c commit: 1a850f4a53b9a0dc1104c6bf418e5036edf429d4 [1/169] origin config: i386-randconfig-s002-20200623 (attached as .config) compiler: gcc-9 (Debian 9.3.0-13) 9.3.0 reproduce: # apt-get install sparse # sparse version: v0.6.2-dirty git checkout 1a850f4a53b9a0dc1104c6bf418e5036edf429d4 # save the attached .config to linux build tree make W=1 C=1 ARCH=i386 CF='-fdiagnostic-prefix -D__CHECK_ENDIAN__' If you fix the issue, kindly add following tag as appropriate Reported-by: kernel test robot sparse warnings: (new ones prefixed by >>) >> drivers/tty/serial/ucc_uart.c:264:21: sparse: sparse: incorrect type in argument 1 (different address spaces) @@ expected void [noderef] __iomem * @@ got restricted __be16 * @@ >> drivers/tty/serial/ucc_uart.c:264:21: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:264:21: sparse: got restricted __be16 * drivers/tty/serial/ucc_uart.c:268:21: sparse: sparse: incorrect type in argument 1 (different address spaces) @@ expected void [noderef] __iomem * @@ got restricted __be16 * @@ drivers/tty/serial/ucc_uart.c:268:21: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:268:21: sparse: got restricted __be16 * drivers/tty/serial/ucc_uart.c:286:6: sparse: sparse: symbol 'qe_uart_set_mctrl' was not declared. Should it be static? drivers/tty/serial/ucc_uart.c:347:17: sparse: sparse: incorrect type in argument 2 (different address spaces) @@ expected void [noderef] __iomem * @@ got restricted __be16 * @@ drivers/tty/serial/ucc_uart.c:347:17: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:347:17: sparse: got restricted __be16 * drivers/tty/serial/ucc_uart.c:348:17: sparse: sparse: incorrect type in argument 1 (different address spaces) @@ expected void [noderef] __iomem * @@ got restricted __be16 * @@ drivers/tty/serial/ucc_uart.c:348:17: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:348:17: sparse: got restricted __be16 * drivers/tty/serial/ucc_uart.c:348:17: sparse: sparse: incorrect type in argument 2 (different address spaces) @@ expected void [noderef] __iomem * @@ got restricted __be16 * @@ drivers/tty/serial/ucc_uart.c:348:17: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:348:17: sparse: got restricted __be16 * drivers/tty/serial/ucc_uart.c:350:21: sparse: sparse: incorrect type in argument 1 (different address spaces) @@ expected void [noderef] __iomem * @@ got restricted __be16 * @@ drivers/tty/serial/ucc_uart.c:350:21: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:350:21: sparse: got restricted __be16 * drivers/tty/serial/ucc_uart.c:369:18: sparse: sparse: incorrect type in argument 1 (different address spaces) @@ expected void [noderef] __iomem * @@ got restricted __be16 * @@ drivers/tty/serial/ucc_uart.c:369:18: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:369:18: sparse: got restricted __be16 * drivers/tty/serial/ucc_uart.c:382:17: sparse: sparse: incorrect type in argument 2 (different address spaces) @@ expected void [noderef] __iomem * @@ got restricted __be16 * @@ drivers/tty/serial/ucc_uart.c:382:17: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:382:17: sparse: got restricted __be16 * drivers/tty/serial/ucc_uart.c:383:17: sparse: sparse: incorrect type in argument 1 (different address spaces) @@ expected void [noderef] __iomem * @@ got restricted __be16 * @@ drivers/tty/serial/ucc_uart.c:383:17: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:383:17: sparse: got restricted __be16 * drivers/tty/serial/ucc_uart.c:383:17: sparse: sparse: incorrect type in argument 2 (different address spaces) @@ expected void [noderef] __iomem * @@ got restricted __be16 * @@ drivers/tty/serial/ucc_uart.c:383:17: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:383:17: sparse: got restricted __be16 * drivers/tty/serial/ucc_uart.c:386:21: sparse: sparse: incorrect type in argument 1 (different address spaces) @@ expected void [noderef] __iomem * @@ got restricted __be16 * @@ drivers/tty/serial/ucc_uart.c:386:21: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:386:21: sparse: got restricted __be16 * drivers/tty/serial/ucc_uart.c:474:26: sparse: sparse: incorrect type in argument 1 (different address spaces) @@ expected void [noderef] __iomem * @@ got restricted __be16 * @@ drivers/tty/serial/ucc_uart.c:474:26: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:474:26: sparse: got restricted __be16 * drivers/tty/serial/ucc_uart.c:481:21: sparse: sparse: incorrect type in argument 1 (different address spaces) @@ expected void [noderef] __iomem * @@ got restricted __be16 * @@ drivers/tty/serial/ucc_uart.c:481:21: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:481:21: sparse: got restricted __be16 * drivers/tty/serial/ucc_uart.c:512:17: sparse: sparse: incorrect type in argument 1 (different address spaces) @@ expected void [noderef] __iomem * @@ got restricted __be16 * @@ drivers/tty/serial/ucc_uart.c:512:17: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:512:17: sparse: got restricted __be16 * drivers/tty/serial/ucc_uart.c:512:17: sparse: sparse: incorrect type in argument 2 (different address spaces) @@ expected void [noderef] __iomem * @@ got restricted __be16 * @@ drivers/tty/serial/ucc_uart.c:512:17: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:512:17: sparse: got restricted __be16 * drivers/tty/serial/ucc_uart.c:515:21: sparse: sparse: incorrect type in argument 1 (different address spaces) @@ expected void [noderef] __iomem * @@ got restricted __be16 * @@ drivers/tty/serial/ucc_uart.c:515:21: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:515:21: sparse: got restricted __be16 * drivers/tty/serial/ucc_uart.c:604:17: sparse: sparse: incorrect type in argument 2 (different address spaces) @@ expected void [noderef] __iomem * @@ got restricted __be16 * @@ drivers/tty/serial/ucc_uart.c:604:17: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:604:17: sparse: got restricted __be16 * >> drivers/tty/serial/ucc_uart.c:605:17: sparse: sparse: incorrect type in argument 2 (different address spaces) @@ expected void [noderef] __iomem * @@ got restricted __be32 * @@ drivers/tty/serial/ucc_uart.c:605:17: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:605:17: sparse: got restricted __be32 * drivers/tty/serial/ucc_uart.c:606:17: sparse: sparse: incorrect type in argument 2 (different address spaces) @@ expected void [noderef] __iomem * @@ got restricted __be16 * @@ drivers/tty/serial/ucc_uart.c:606:17: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:606:17: sparse: got restricted __be16 * drivers/tty/serial/ucc_uart.c:612:9: sparse: sparse: incorrect type in argument 2 (different address spaces) @@ expected void [noderef] __iomem * @@ got restricted __be16 * @@ drivers/tty/serial/ucc_uart.c:612:9: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:612:9: sparse: got restricted __be16 * drivers/tty/serial/ucc_uart.c:613:9: sparse: sparse: incorrect type in argument 2 (different address spaces) @@ expected void [noderef] __iomem * @@ got restricted __be32 * @@ drivers/tty/serial/ucc_uart.c:613:9: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:613:9: sparse: got restricted __be32 * drivers/tty/serial/ucc_uart.c:614:9: sparse: sparse: incorrect type in argument 2 (different address spaces) @@ expected void [noderef] __iomem * @@ got restricted __be16 * @@ drivers/tty/serial/ucc_uart.c:614:9: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:614:9: sparse: got restricted __be16 * drivers/tty/serial/ucc_uart.c:625:17: sparse: sparse: incorrect type in argument 2 (different address spaces) @@ expected void [noderef] __iomem * @@ got restricted __be16 * @@ drivers/tty/serial/ucc_uart.c:625:17: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:625:17: sparse: got restricted __be16 * drivers/tty/serial/ucc_uart.c:626:17: sparse: sparse: incorrect type in argument 2 (different address spaces) @@ expected void [noderef] __iomem * @@ got restricted __be32 * @@ drivers/tty/serial/ucc_uart.c:626:17: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:626:17: sparse: got restricted __be32 * drivers/tty/serial/ucc_uart.c:627:17: sparse: sparse: incorrect type in argument 2 (different address spaces) @@ expected void [noderef] __iomem * @@ got restricted __be16 * @@ drivers/tty/serial/ucc_uart.c:627:17: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:627:17: sparse: got restricted __be16 * drivers/tty/serial/ucc_uart.c:637:9: sparse: sparse: incorrect type in argument 2 (different address spaces) @@ expected void [noderef] __iomem * @@ got restricted __be16 * @@ drivers/tty/serial/ucc_uart.c:637:9: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:637:9: sparse: got restricted __be16 * drivers/tty/serial/ucc_uart.c:638:9: sparse: sparse: incorrect type in argument 2 (different address spaces) @@ expected void [noderef] __iomem * @@ got restricted __be32 * @@ drivers/tty/serial/ucc_uart.c:638:9: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:638:9: sparse: got restricted __be32 * drivers/tty/serial/ucc_uart.c:639:9: sparse: sparse: incorrect type in argument 2 (different address spaces) @@ expected void [noderef] __iomem * @@ got restricted __be16 * @@ drivers/tty/serial/ucc_uart.c:639:9: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:639:9: sparse: got restricted __be16 * drivers/tty/serial/ucc_uart.c:653:46: sparse: sparse: incorrect type in initializer (different address spaces) @@ expected struct ucc_uart_pram *uccup @@ got struct ucc_uart_pram [noderef] __iomem *uccup @@ drivers/tty/serial/ucc_uart.c:653:46: sparse: expected struct ucc_uart_pram *uccup drivers/tty/serial/ucc_uart.c:653:46: sparse: got struct ucc_uart_pram [noderef] __iomem *uccup >> drivers/tty/serial/ucc_uart.c:661:9: sparse: sparse: incorrect type in argument 2 (different address spaces) @@ expected void [noderef] __iomem * @@ got unsigned char * @@ drivers/tty/serial/ucc_uart.c:661:9: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:661:9: sparse: got unsigned char * drivers/tty/serial/ucc_uart.c:662:9: sparse: sparse: incorrect type in argument 2 (different address spaces) @@ expected void [noderef] __iomem * @@ got unsigned char * @@ drivers/tty/serial/ucc_uart.c:662:9: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:662:9: sparse: got unsigned char * drivers/tty/serial/ucc_uart.c:663:9: sparse: sparse: incorrect type in argument 2 (different address spaces) @@ expected void [noderef] __iomem * @@ got restricted __be16 * @@ drivers/tty/serial/ucc_uart.c:663:9: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:663:9: sparse: got restricted __be16 * drivers/tty/serial/ucc_uart.c:664:9: sparse: sparse: incorrect type in argument 2 (different address spaces) @@ expected void [noderef] __iomem * @@ got restricted __be16 * @@ drivers/tty/serial/ucc_uart.c:664:9: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:664:9: sparse: got restricted __be16 * drivers/tty/serial/ucc_uart.c:665:9: sparse: sparse: incorrect type in argument 2 (different address spaces) @@ expected void [noderef] __iomem * @@ got restricted __be16 * @@ drivers/tty/serial/ucc_uart.c:665:9: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:665:9: sparse: got restricted __be16 * drivers/tty/serial/ucc_uart.c:666:9: sparse: sparse: incorrect type in argument 2 (different address spaces) @@ expected void [noderef] __iomem * @@ got restricted __be16 * @@ drivers/tty/serial/ucc_uart.c:666:9: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:666:9: sparse: got restricted __be16 * drivers/tty/serial/ucc_uart.c:667:9: sparse: sparse: incorrect type in argument 2 (different address spaces) @@ expected void [noderef] __iomem * @@ got restricted __be16 * @@ drivers/tty/serial/ucc_uart.c:667:9: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:667:9: sparse: got restricted __be16 * drivers/tty/serial/ucc_uart.c:668:9: sparse: sparse: incorrect type in argument 2 (different address spaces) @@ expected void [noderef] __iomem * @@ got restricted __be16 * @@ drivers/tty/serial/ucc_uart.c:668:9: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:668:9: sparse: got restricted __be16 * drivers/tty/serial/ucc_uart.c:669:9: sparse: sparse: incorrect type in argument 2 (different address spaces) @@ expected void [noderef] __iomem * @@ got restricted __be16 * @@ drivers/tty/serial/ucc_uart.c:669:9: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:669:9: sparse: got restricted __be16 * drivers/tty/serial/ucc_uart.c:670:9: sparse: sparse: incorrect type in argument 2 (different address spaces) @@ expected void [noderef] __iomem * @@ got restricted __be16 * @@ drivers/tty/serial/ucc_uart.c:670:9: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:670:9: sparse: got restricted __be16 * drivers/tty/serial/ucc_uart.c:671:9: sparse: sparse: incorrect type in argument 2 (different address spaces) @@ expected void [noderef] __iomem * @@ got restricted __be16 * @@ drivers/tty/serial/ucc_uart.c:671:9: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:671:9: sparse: got restricted __be16 * drivers/tty/serial/ucc_uart.c:672:9: sparse: sparse: incorrect type in argument 2 (different address spaces) @@ expected void [noderef] __iomem * @@ got restricted __be16 * @@ drivers/tty/serial/ucc_uart.c:672:9: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:672:9: sparse: got restricted __be16 * drivers/tty/serial/ucc_uart.c:674:17: sparse: sparse: incorrect type in argument 2 (different address spaces) @@ expected void [noderef] __iomem * @@ got restricted __be16 * @@ drivers/tty/serial/ucc_uart.c:674:17: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:674:17: sparse: got restricted __be16 * drivers/tty/serial/ucc_uart.c:675:9: sparse: sparse: incorrect type in argument 2 (different address spaces) @@ expected void [noderef] __iomem * @@ got restricted __be16 * @@ drivers/tty/serial/ucc_uart.c:675:9: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:675:9: sparse: got restricted __be16 * drivers/tty/serial/ucc_uart.c:713:17: sparse: sparse: incorrect type in argument 2 (different address spaces) @@ expected void [noderef] __iomem * @@ got restricted __be16 * @@ drivers/tty/serial/ucc_uart.c:713:17: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:713:17: sparse: got restricted __be16 * drivers/tty/serial/ucc_uart.c:714:17: sparse: sparse: incorrect type in argument 2 (different address spaces) @@ expected void [noderef] __iomem * @@ got restricted __be16 * @@ drivers/tty/serial/ucc_uart.c:714:17: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:714:17: sparse: got restricted __be16 * drivers/tty/serial/ucc_uart.c:715:17: sparse: sparse: incorrect type in argument 2 (different address spaces) @@ expected void [noderef] __iomem * @@ got restricted __be32 * @@ drivers/tty/serial/ucc_uart.c:715:17: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:715:17: sparse: got restricted __be32 * drivers/tty/serial/ucc_uart.c:716:17: sparse: sparse: incorrect type in argument 2 (different address spaces) @@ expected void [noderef] __iomem * @@ got restricted __be32 * @@ drivers/tty/serial/ucc_uart.c:716:17: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:716:17: sparse: got restricted __be32 * drivers/tty/serial/ucc_uart.c:717:17: sparse: sparse: incorrect type in argument 2 (different address spaces) @@ expected void [noderef] __iomem * @@ got unsigned char * @@ drivers/tty/serial/ucc_uart.c:717:17: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:717:17: sparse: got unsigned char * drivers/tty/serial/ucc_uart.c:718:17: sparse: sparse: incorrect type in argument 2 (different address spaces) @@ expected void [noderef] __iomem * @@ got unsigned char * @@ drivers/tty/serial/ucc_uart.c:718:17: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:718:17: sparse: got unsigned char * drivers/tty/serial/ucc_uart.c:719:17: sparse: sparse: incorrect type in argument 2 (different address spaces) @@ expected void [noderef] __iomem * @@ got restricted __be32 * @@ drivers/tty/serial/ucc_uart.c:719:17: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:719:17: sparse: got restricted __be32 * drivers/tty/serial/ucc_uart.c:720:17: sparse: sparse: incorrect type in argument 2 (different address spaces) @@ expected void [noderef] __iomem * @@ got unsigned char * @@ drivers/tty/serial/ucc_uart.c:720:17: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:720:17: sparse: got unsigned char * drivers/tty/serial/ucc_uart.c:721:17: sparse: sparse: incorrect type in argument 2 (different address spaces) @@ expected void [noderef] __iomem * @@ got restricted __be32 * @@ drivers/tty/serial/ucc_uart.c:721:17: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:721:17: sparse: got restricted __be32 * drivers/tty/serial/ucc_uart.c:722:17: sparse: sparse: incorrect type in argument 2 (different address spaces) @@ expected void [noderef] __iomem * @@ got unsigned char * @@ drivers/tty/serial/ucc_uart.c:722:17: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:722:17: sparse: got unsigned char * drivers/tty/serial/ucc_uart.c:724:17: sparse: sparse: incorrect type in argument 2 (different address spaces) @@ expected void [noderef] __iomem * @@ got unsigned char * @@ drivers/tty/serial/ucc_uart.c:724:17: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:724:17: sparse: got unsigned char * drivers/tty/serial/ucc_uart.c:726:17: sparse: sparse: incorrect type in argument 2 (different address spaces) @@ expected void [noderef] __iomem * @@ got restricted __be16 * @@ drivers/tty/serial/ucc_uart.c:726:17: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:726:17: sparse: got restricted __be16 * drivers/tty/serial/ucc_uart.c:727:17: sparse: sparse: incorrect type in argument 2 (different address spaces) @@ expected void [noderef] __iomem * @@ got unsigned char * @@ drivers/tty/serial/ucc_uart.c:727:17: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:727:17: sparse: got unsigned char * drivers/tty/serial/ucc_uart.c:728:17: sparse: sparse: incorrect type in argument 2 (different address spaces) @@ expected void [noderef] __iomem * @@ got restricted __be16 * @@ drivers/tty/serial/ucc_uart.c:728:17: sparse: expected void [noderef] __iomem * drivers/tty/serial/ucc_uart.c:728:17: sparse: got restricted __be16 * drivers/tty/serial/ucc_uart.c:1000:27: sparse: sparse: cast removes address space '__iomem' of expression drivers/tty/serial/ucc_uart.c:1000:24: sparse: sparse: incorrect type in assignment (different address spaces) @@ expected struct ucc_uart_pram [noderef] __iomem *uccup @@ got struct ucc_uart_pram * @@ drivers/tty/serial/ucc_uart.c:1000:24: sparse: expected struct ucc_uart_pram [noderef] __iomem *uccup drivers/tty/serial/ucc_uart.c:1000:24: sparse: got struct ucc_uart_pram * drivers/tty/serial/ucc_uart.c:1001:29: sparse: sparse: incorrect type in assignment (different address spaces) @@ expected struct qe_bd *rx_bd_base @@ got struct qe_bd [noderef] __iomem *rx_bd @@ drivers/tty/serial/ucc_uart.c:1001:29: sparse: expected struct qe_bd *rx_bd_base drivers/tty/serial/ucc_uart.c:1001:29: sparse: got struct qe_bd [noderef] __iomem *rx_bd drivers/tty/serial/ucc_uart.c:1002:29: sparse: sparse: incorrect type in assignment (different address spaces) @@ expected struct qe_bd *tx_bd_base @@ got struct qe_bd [noderef] __iomem *tx_bd @@ drivers/tty/serial/ucc_uart.c:1002:29: sparse: expected struct qe_bd *tx_bd_base drivers/tty/serial/ucc_uart.c:1002:29: sparse: got struct qe_bd [noderef] __iomem *tx_bd -- >> drivers/video/fbdev/atmel_lcdfb.c:354:27: sparse: sparse: incorrect type in assignment (different address spaces) @@ expected char [noderef] __iomem *screen_base @@ got void * @@ >> drivers/video/fbdev/atmel_lcdfb.c:354:27: sparse: expected char [noderef] __iomem *screen_base drivers/video/fbdev/atmel_lcdfb.c:354:27: sparse: got void * >> drivers/video/fbdev/atmel_lcdfb.c:362:20: sparse: sparse: incorrect type in argument 1 (different address spaces) @@ expected void *p @@ got char [noderef] __iomem *screen_base @@ drivers/video/fbdev/atmel_lcdfb.c:362:20: sparse: expected void *p >> drivers/video/fbdev/atmel_lcdfb.c:362:20: sparse: got char [noderef] __iomem *screen_base >> drivers/video/fbdev/atmel_lcdfb.c:333:59: sparse: sparse: incorrect type in argument 3 (different address spaces) @@ expected void *cpu_addr @@ got char [noderef] __iomem *screen_base @@ drivers/video/fbdev/atmel_lcdfb.c:333:59: sparse: expected void *cpu_addr drivers/video/fbdev/atmel_lcdfb.c:333:59: sparse: got char [noderef] __iomem *screen_base >> drivers/video/fbdev/atmel_lcdfb.c:333:59: sparse: sparse: incorrect type in argument 3 (different address spaces) @@ expected void *cpu_addr @@ got char [noderef] __iomem *screen_base @@ drivers/video/fbdev/atmel_lcdfb.c:333:59: sparse: expected void *cpu_addr drivers/video/fbdev/atmel_lcdfb.c:333:59: sparse: got char [noderef] __iomem *screen_base -- >> drivers/clocksource/jcore-pit.c:126:33: sparse: sparse: incorrect type in initializer (different address spaces) @@ expected void const [noderef] __percpu *__vpp_verify @@ got void * @@ >> drivers/clocksource/jcore-pit.c:126:33: sparse: expected void const [noderef] __percpu *__vpp_verify drivers/clocksource/jcore-pit.c:126:33: sparse: got void * >> drivers/clocksource/jcore-pit.c:176:40: sparse: sparse: incorrect type in argument 5 (different address spaces) @@ expected void *dev @@ got struct jcore_pit [noderef] __percpu *static [assigned] [toplevel] jcore_pit_percpu @@ drivers/clocksource/jcore-pit.c:176:40: sparse: expected void *dev >> drivers/clocksource/jcore-pit.c:176:40: sparse: got struct jcore_pit [noderef] __percpu *static [assigned] [toplevel] jcore_pit_percpu vim +264 drivers/tty/serial/ucc_uart.c d7584ed2b994a5 drivers/serial/ucc_uart.c Timur Tabi 2008-01-15 248 d7584ed2b994a5 drivers/serial/ucc_uart.c Timur Tabi 2008-01-15 249 /* d7584ed2b994a5 drivers/serial/ucc_uart.c Timur Tabi 2008-01-15 250 * Return 1 if the QE is done transmitting all buffers for this port d7584ed2b994a5 drivers/serial/ucc_uart.c Timur Tabi 2008-01-15 251 * d7584ed2b994a5 drivers/serial/ucc_uart.c Timur Tabi 2008-01-15 252 * This function scans each BD in sequence. If we find a BD that is not d7584ed2b994a5 drivers/serial/ucc_uart.c Timur Tabi 2008-01-15 253 * ready (READY=1), then we return 0 indicating that the QE is still sending d7584ed2b994a5 drivers/serial/ucc_uart.c Timur Tabi 2008-01-15 254 * data. If we reach the last BD (WRAP=1), then we know we've scanned d7584ed2b994a5 drivers/serial/ucc_uart.c Timur Tabi 2008-01-15 255 * the entire list, and all BDs are done. d7584ed2b994a5 drivers/serial/ucc_uart.c Timur Tabi 2008-01-15 256 */ d7584ed2b994a5 drivers/serial/ucc_uart.c Timur Tabi 2008-01-15 257 static unsigned int qe_uart_tx_empty(struct uart_port *port) d7584ed2b994a5 drivers/serial/ucc_uart.c Timur Tabi 2008-01-15 258 { d7584ed2b994a5 drivers/serial/ucc_uart.c Timur Tabi 2008-01-15 259 struct uart_qe_port *qe_port = d7584ed2b994a5 drivers/serial/ucc_uart.c Timur Tabi 2008-01-15 260 container_of(port, struct uart_qe_port, port); d7584ed2b994a5 drivers/serial/ucc_uart.c Timur Tabi 2008-01-15 261 struct qe_bd *bdp = qe_port->tx_bd_base; d7584ed2b994a5 drivers/serial/ucc_uart.c Timur Tabi 2008-01-15 262 d7584ed2b994a5 drivers/serial/ucc_uart.c Timur Tabi 2008-01-15 263 while (1) { 8b1cdc4033bd16 drivers/tty/serial/ucc_uart.c Rasmus Villemoes 2019-11-28 @264 if (qe_ioread16be(&bdp->status) & BD_SC_READY) d7584ed2b994a5 drivers/serial/ucc_uart.c Timur Tabi 2008-01-15 265 /* This BD is not done, so return "not done" */ d7584ed2b994a5 drivers/serial/ucc_uart.c Timur Tabi 2008-01-15 266 return 0; d7584ed2b994a5 drivers/serial/ucc_uart.c Timur Tabi 2008-01-15 267 8b1cdc4033bd16 drivers/tty/serial/ucc_uart.c Rasmus Villemoes 2019-11-28 268 if (qe_ioread16be(&bdp->status) & BD_SC_WRAP) d7584ed2b994a5 drivers/serial/ucc_uart.c Timur Tabi 2008-01-15 269 /* d7584ed2b994a5 drivers/serial/ucc_uart.c Timur Tabi 2008-01-15 270 * This BD is done and it's the last one, so return d7584ed2b994a5 drivers/serial/ucc_uart.c Timur Tabi 2008-01-15 271 * "done" d7584ed2b994a5 drivers/serial/ucc_uart.c Timur Tabi 2008-01-15 272 */ d7584ed2b994a5 drivers/serial/ucc_uart.c Timur Tabi 2008-01-15 273 return 1; d7584ed2b994a5 drivers/serial/ucc_uart.c Timur Tabi 2008-01-15 274 d7584ed2b994a5 drivers/serial/ucc_uart.c Timur Tabi 2008-01-15 275 bdp++; fc811472c2167c drivers/tty/serial/ucc_uart.c Joe Perches 2013-10-08 276 } d7584ed2b994a5 drivers/serial/ucc_uart.c Timur Tabi 2008-01-15 277 } d7584ed2b994a5 drivers/serial/ucc_uart.c Timur Tabi 2008-01-15 278 :::::: The code at line 264 was first introduced by commit :::::: 8b1cdc4033bd1659c5499c918d4e59bf8253abec serial: ucc_uart: replace ppc-specific IO accessors :::::: TO: Rasmus Villemoes :::::: CC: Li Yang --- 0-DAY CI Kernel Test Service, Intel Corporation https://lists.01.org/hyperkitty/list/kbuild-all@lists.01.org --rwEMma7ioTxnRzrJ Content-Type: application/gzip Content-Disposition: attachment; filename=".config.gz" Content-Transfer-Encoding: base64 H4sICEqK8V4AAy5jb25maWcAlDzLcty2svt8xZSzSRbJ0cuKUre0wIAgBxmSoAFwHtqwFHns qCJLviPpJP772w0QJACCSq4XtoluNF79RmO+/+77BXl9efpy+3J/d/vw8G3x+fB4ON6+HD4u Pt0/HP5nkYlFLfSCZVz/DMjl/ePr3/+5P7+6XLz/+ernk5+Od6eL9eH4eHhY0KfHT/efX6H3 /dPjd99/R0Wd86KjtNswqbioO812+vrd57u7n35d/JAdfr+/fVz8+vM5kDk9/9H+753Xjauu oPT6m2sqRlLXv56cn5w4QJkN7WfnFyfmz0CnJHUxgE888iuiOqKqrhBajIN4AF6XvGYeSNRK y5ZqIdXYyuWHbivkemxZtrzMNK9Yp8myZJ0SUo9QvZKMZEA8F/AXoCjsCvv1/aIwm/+weD68 vH4dd3ApxZrVHWygqhpv4JrrjtWbjkjYAl5xfX1+Ns61ajiMrZnyxi4FJaXbi3fvggl3ipTa a1yRDevWTNas7Iob7g3sQ5YAOUuDypuKpCG7m7keYg5wMQLCOX2/CJvNhBb3z4vHpxfcyAkC Tust+O7m7d7ibfCFD+6BGctJW2pzYt4Ou+aVULomFbt+98Pj0+Phx3cjWbUlTYKg2qsNbzzR 6BvwX6pLf1saofiuqz60rGUJSlui6aozUL8XlUKprmKVkPuOaE3oKrnsVrGSL5Mg0oLOSIxo zpVIGNVg4IxJWToRAGlaPL/+/vzt+eXwZRSBgtVMcmqErZFi6UmlD1IrsU1DeP0boxrZ3mMw mQFIwSZ3kilWZ+mudOUzP7ZkoiK8DtsUr1JI3Yoziavdh9CcKM0EH8EwnTorma9Z/EngBOWG 4Aq6SmQsoiYkZVmvWnhdeIzREKkYIqXpZmzZFrkyZ394/Lh4+hQdwahHBV0r0cJAlmky4Q1j ztNHMaz+LdV5Q0qeEc26Erago3taJg7TaM/NyBsR2NBjG1brxHZ5wK6CEyDZb62vBAe8Sqiu bXAujvv0/ZfD8TnFgJrTNWhgBhzmkapFt7pBXVsZxhp4HxobGENknCYkwPbimb9w0+bxJi9W eOZmI2RwPJM5uj6NZKxqNJCqA1l27RtRtrUmcp8U1x4rMV3Xnwro7naKNu1/9O3zn4sXmM7i Fqb2/HL78ry4vbt7en18uX/8HO0ddOgINTQsgw4jIxua8x7ByRkuVYayTxloJkDVSSQ0p0oT rdKLVDxs7/f0X6zG042wEq5EaYTRJ2c2RtJ2oVL8U+87gI1HDB8d2wGbePykAgzTJ2rC5Zmu PRcnQJOmNmOpdi0JfRvQGU+lWvrsF65vUEJr+x9PLa0H9hHUb14BzUDNlQI9kByUN8/19dnJ yHe81mtwS3IW4ZyeB8akBbfMOlp0BVrQyL/jU3X3x+Hj68PhuPh0uH15PR6eTXO/mAQ00Ghb UutuidoO6LZ1RZpOl8suL1u18rRbIUXbeCtqSMGsuDA5toI1pUX02a3hH89zLNc9tZh6t5Vc syUxKxtZ0cLMuhOS24MbnqlEL5mFjlAIzUHqb/zp9+2rtmCwBwl6GdtwypJy12OA5MSCG82U yTxJGYxUSpGC0wQGDjTCOM0WtH6tfCECzVIH60dHqVYJeuDNyKAz7FzwXTMdfMO+03UjgE9R WUNcEChey46k1cIsI7kzYOJyBQsEJUvBEKVOUbKS7EMega02FlZ6Lov5JhVQs4bWczRlFnnw 0BA57tAS+uvQ4LvpBi6i7wt/tUsh0Ebg/9M8QDvRwGnwG4b+ijlrIStS05RfGmMr+E/g7lo3 N1ADPDu9jHFAxVLWGLfJqLWoT0NVs4a5gDLHyXi73ASMaBV1imXCQSvw5zmykTcPkJcK9Go3 8Wbs2U+ac+sJelxoXPjBEwjUY/zd1RX3I1FP4bAyh/ORPuHZ1RPwGfM2mFUL0Xv0CfLhkW9E sDhe1KTMPQY1C/AbjI/mN6hVoA0J9xiOi66VgWtLsg2Hafb75+0MEFkSKbl/CmtE2Vdq2tIF mz+0mi1A0dN8E0g1cIYbcy4kkiauy1PCbMwKJhjGSQK1mkYnAz77h4D/qiXLsqR6sHwMY3ax Q2waYTrdpoLJGitsjF+fr2kOx09Pxy+3j3eHBfvv4RH8HQJmkaLHAx7m6LskiRudnBpiMK7/ chhHcFPZMZzhDE2WqBoCpliuU9FwSQJ7pMo2HZIiImy8BOvcx97zaGj/Sg4RigRpFFUacdXm Ofgdxt6b9ROwAel4XbOqg1CDYCqK55ySPhj1HHCR83Li/PabGaaGHN3d1WV37mlx+PYNgs1W oe7LGIWg0ZMH0eqm1Z3RwPr63eHh0/nZT5jXG4wGelFglzrVNk2QwAJni66tjziBVZXnTRpe r9BpkjUYHG7jseurt+Bkd316mUZwPPAPdAK0gNwQ9yrSZb6tc4BAXVqqZO8MRZdndNoF1ABf Sgxns9BMD4KO4QLqkV0KRsBF6DDLGBm4AQNYAmShawpgD2+fzZwU09ZnssEVOOu+pwKuhwMZ 7QGkJAbcq7Zez+AZPk6i2fnwJZO1zUGATVJ8WcZTVq1qGBzCDNj402brSOl5kiEFw1LKKRiY ktMsSbTWpIM8xZSDrWRElnuKqRLfnjSFDRNK0DNgL4Ygok/5KoLHgMyNe80wzes0ZnN8ujs8 Pz8dFy/fvtoA0QsnejI3EHf3fDVqiCqVvkOxzRnRrWTWh/X4SpRZzv3oQjINljVIRGN/y1bg 4sgyBLCdhhPAUx3N+jAfRHBDJFUaIoAfganMRqWDaEQh1Ug/4fgPNlvlED7ywPnu22adeiQv M3p+drqLZ35+1nHJ07OyzraoOCg1cINBYtEtZyltvNoDw4PvAG5l0Qb58YZIsuFGoY16uW+b nfAaLFdEx6bDmhZzPMBbpe59o5HoJr39w2BvJERiVBfvDkSqi6tLtUvSR1Aa8P4NgFZ0FlZV MyNdzhEEBQE+csX5P4B5YtEOGjC1a7xIE1zPzGP9y0z7VbqdylaJdHxbsRxMOgvTQSN0y2tM ItOZifTg82yGdklm6BYMjHqxO30D2pUzx0P3ku/43CFsOKHnXfoexQBn9g692Jle4BqlvSij k6w5nVEHRpBrXI01mDYLdOmjlKfzMKvP0C+notmH2hJ91wb0vQ3lVVuFYOD8SO1WzY6uisuL uFlswhbwUHjVVkZP56Ti5T6clNEmEKBWyvPKOAEVh5ahC8JbxN9UuzmbgUOAPbTrnDaDrp42 rvaFfxfimilIEmnlFAD+Xq0qBv6r72866M2KiJ1/I7JqmNVhMmpjECGjtyS1t7GZH7PWxhdR 6HeDN7JkBdA9TQPxymYC6j37CQAaApbDnWl4WrGZAwxNmvUDvFjmy9Pj/cvTMch0e5GS47o6 CrknGJI05VtwiunsMKHv4RhDLLahnRuihpn5hgstWUHoHhgsVNgexunl0r/NMV6GasDRMrwQ +g6iKfEvJqsEMS1APJeem8qv1iFdyTCPBKSDhGrFqRQ0uPYamga2H1XNAILdSRmRAQ6ekFUu eZAaMsfvy2XvcPHMH6YWeEsDHmaShXrYRcp097DLCy/cML63yHNw6q9P/qYnYRVD3yOcUUMm PiFBB1ZD2Mqpt33GHclB7oAECA1J+O3mmnAezErwh919MN4/eizLS+Sg0jlceMHXsuuTkC8a pG05bXa7Gp1yIs3CUDlDSCcU5klk24Q3uYiCbIMuUeVmOSLa7jGf4X0qXixsry8vBs7Q0k/Y wxdGBVzzIBMetvc7Nuidkxk03GLMKBmFNFFS9jxjFxKsk4KwBbUIGrcsAtvURLgwBXFwZOIq HrVYxaLVzhwlct1EjCOMtAOSwMRsd+IQWe5nCnMObNqGORtGMXBPCctNd3py4uNCy9n7kzQb 3XTnJ7MgoHOSHOH6dBQ1G0isJN5aenlBtmM0yEhJolZd1ibn3Kz2ilOQCZBGifJ8GoqzZCZX 1EvaQNOeJ6a8Mfs4IwsmYjcE/FSfG5CUvKhhwLOwCMrmRDaZEsEaqszkHkB2ypSeFBnP912Z aS9JPdqWN2LigEt7+ejFcgViWk7yLD2OakqI3xq0adq/xWue/jocF2DHbj8fvhweX8xohDZ8 8fQVq83spZ47QJuDSMdXKasUJhSQrDe7yZezl+b0FCgQsfav62zaCLSZ7itdsEvjp45MS58R NKbb6GwgNWbTxiIaxDWuYhGb+IBaQ6Wd0DwO3sPmKuUs+FiSbTqxYVLyjA1ZnHl0Rl0FSWpf EYPQyXqWRIOdSNsBi9BqHaocH2quxe3GWcRoayfw/i7i+vwqwNvAEsVkcvlMsGVPAnhyblrG 0ZfsQ9coFc2or1oQcnTm0uCwJiQEznYiRQFWhegJil6BF0bKiDdNdaMBG5Frm0KSLB41hiUY 8g1Oo8CRpUgn1+1eCQgzQPOksjOWoZfxHlrrF5FpFQSVoFn0SqTl3bJTkby6G8WTNMwT8rC9 v1ALKSIgOV7W6HwqYoPy4XirCYcVpf6XO91taQifZTPz/9zbHutexdGWMhbX1eos8uPhf18P j3ffFs93tw9B0OIYNwzrDCsXYoPVfxJTzTPgofgpBiKnB8bGAVzZI/aeuQT+h064vwpOKXVv nOqAob+pE/jH+Yg6YzCbNDMlewCsr8x7ez7RapMz+deLixeVgrulzI40N/OBZz7FPLP4eLz/ r70a9EnaPUmJ2OggNpHiM0xLqeseApw+fRsC/wYupCGJu1eLbbeei2VHjF+i2YyAyOqH0Kto RuCsWH5ntQJXf8P1fpJx3xmnpBKpaNQ47Q04deAQ2ASM5LUIB5nCOx2GaSEWp6s5kKrilV3Y DDLMLp632+ja1Jem83omgyDqQrYpleWgK5CXKIEwcvpwzfL8x+3x8NHz6ZIrKPlybnHmng1L wEgTB30fhOQfPKbya/8S2nEQAv7x4RDqytBIuxYjUiXJglvWAFixuo2FcQBqlq4rD5DcTULS mFmQu3WIV2iWMUTsRiRjtH92ss2mLF+fXcPiBzD1i8PL3c8/+ioB7X8hMFpP++AGXFX28w2U jEuWrBazYFJ7uVxswhHDFkshbHMDewkMex+M6cCg0TOmFAOqIF41LStpzW7KWJfcu/GtmX7/ /uR0bCiYP1dUInXM1XuVB5WXMxtvD+X+8fb4bcG+vD7cRsLTx359qs7RmuCH3g+4VXhRLmwy wQyR3x+//AXyucimRoDICnakMl6pFjQZTY44xjWPa+gtuBlJpEBhz7E6Jksp1pzLaos5F4g8 g6RIVnGeBZ+2FCtqoqTuKkJXGCHXEEVg2iKHILgvwnSjbDuaFzEBv9WF2SNUtxBfKYivd53c 6uAua0mri192u67eSJLMoDII12vwF3P/oYMQRcmGBfv0ehBo/aSg9WDMUZv6vUkMGeJhzSp4 DSIo2Y9BXlLZ8Q5s3eIH9vfL4fH5/veHw8hLHGuAPt3eHX5cqNevX5+OLyPj4n5viF/yhi1M +fUmDgf9i6j6MgINTlsGkp1eJPaQeN9awXJ8hrEnv55yEgIqshuAY02KT2srSdOweCGuggQz YX0x55CQKQWxdiRYDZ6QhZgASibFDBHB/Km29MgkYB9aLtfwN4G/qV9vgEjhqzGYPRY5Sczq a+7fPGEWVdv3QeuuAu+nIGFm1mwD5Wexu4Lt/UFYRd2XTfTq6f/DLwFJtsEs6qoz6exo5a4o xN9WXu26TKVLcxGmaDtxjfXh8/F28clNyfrEflX5DIIDTxRpoHrXm0Af4A1/C7bkZvLawB0O RPOb3ftT71YOa1lW5LSredx29v4ybtUNgUjiOnqBeHu8++P+5XCH6byfPh6+wtTRI5h4ZjYL Gl5xmVRp1GaWJmyJm9fsWjDIHgLYYe1rW9qTWPRvbQV+IFn61xDm4oPC6HuF9xV5yMNmAuaW nmONYVubRCmWZ1NMo0zz7uZRpOZ1t8Q3eBEhDovDerNEUdY6rkeyrVjFkwKIJt3ek8FHn3mq cDlva1vZx6TExFHqeduGhdXA48s7Q3ElxDoCoheEqoUXrWgTT6sUbLvxRu1Ls0RmCSIFjUnj vgZ9ioAKw6aCZ4DWZwsVsDdz+3rWVjZ22xXXpkozooV1ZqrL9jVBN0ab6mvTI8I7P1tyjfcf XXyM+P4XIqL+rWx8OpIVIHZ1ZsvFeh4K/UeLp/wANjw4fLU723G17ZawUPu2IIJVHEOcEazM dCIk85QBmK6VNTgvcCRBNXRcM5zgE3wdiWGheX5hq+Hc84wJkcT4rjBY9luEFyWp80xJcgrq l2L3aFXVdmBvVqxPfZuS3SQYnzKlUHq+s3JiHxr19R3RZPpW+356BpaJdqbgEd+b2GeY7ul1 Yqn9BVhf8JnEwI0s4dQj4KRk0enmvqwxALvXgaPSDPuOAU7YDcRHJMvQxvltuQZfuT9vU4MX M0XipV/M2wJ5xy9YCZRWbS5RYUuxdhRvzFN4CMN69PhSxpyFAeIFE1jDiYECgXfX4YxikbbH TSJr8boHLQM+pJAslVc3EHeJl5pbUO0cW6cd6KKkYg17XYXsJ5q904rafwWBUe2yjZQLLbFI FSMYCBQyDxsrIRQv+ruz8wmARNZliCpRgeKZprS5Bpuh3dN4ud35fDcLirvbnU92T4HGvW7g jM7P3F1rqMUHKw+mKDDlA/+j7vMfJCQvuLzHHB2rqdw3wwPZgorNT7/fPh8+Lv60DyG+Hp8+ 3Yepd0TqNyGxAQbqPKTo9vUt8sFW4I9m4IUrr4NXxP/S0RscfdhsfPHji7R5IaPw3YdX82BP RGEIbJ8WxBLk73GPbbKLJlhJVw5arLZ+C8MZ6rcoKEndL5GQZBJtnH1ilv2akoXOHkrwmshr R498hio65mczxash1vuZCtIA6/zq39CCiOHthQAHrq7fPf9xe/puQgOlH2K/N3cbq/a34Kwo BWp+fKoJYZW5Z0+9patBIkHb7KulCN5z9bpXg/Ge3Lcv+zqB4RNcParwIvtDWJPt3k0uVZFs tGnlMREzPLPUrJBc7xMTdjhY+Z+lOoNeFlrHj3o8JBfwx/EqwrZLHdPs38NyfHwO+iZ9hR4g UqFSGdSefld9iPcCH134mSy/dViov9lYdd+QMp6q/fEcpxVTL+Wb2+PLPaqZhf729RDkE2E7 NLdecrbB67LkU7oKzNKI6vGLyoRKATAL4DePqe9oKv4Cqw+YoQgXDW0YmJv3ifZnS8T4ltwL jwGPC1tQlIGB7rOAo6SM4PV+mUwjO/gyD94Dwmfnjnjy+nv8JY9gVmPQX3uJ6LbuT0o14Lyh kqXxu5+xNMamhWW1vZ5aUvMbMpkhY37tYx5FblMIaPEwzYrVJyVpGtQaJMtQzXTRPefoIriX k92S5fgPRhzhz6N4uKaEyWXjRozxpbvNVf59uHt9ucW0E/4E1sIU0L54h7rkdV5p9PU8zirz MOFhJoVBz5B3RN9w8tsHPS1FJW9CabcAUJ+ponik3kdUY85sZt5mUdXhy9Px26IaL3cmqZx0 jecwIVc+WpG6JSnjOZaQWhTPW3OQ2N22QzXmx3d0Ar/P6cQRNP5uTOHbgJ7Q8KMcPilTUGaK yWwV+IV3t4Y+LJ3Jq5l6XMmQ8YMwBZSOJLEvjBmTLnqmhiV5hoE73V1eBAXUS3AofX62L34E uutB/kulbgAcP5mgwP6+TSavL05+vRx7pkKlBKng8d86yDtSCDRt0WmK/cJHbvD5RknQAE3W iCEU5knU9S9jl5smXZB4s2w963OjvDfHUdvw1q+ymiQ5swEZ2Sx16dFnvUzi2OX8vAArc09/ MZ22DrjEPkHbRBE5bLV5MYG/T+PPGpgZFFhNVxVJPnBGeMGQj03BsimWTmg4BJvIlQShwrzs j3wwhC314eWvp+OfWOyRKK0Ecfk/zp5suXEcyV9RzMPGTMT0tm5LGzEPEEhKKPEyQUl0vTDc Ve5px7jtirJ7p/fvNxMgKYDMpGr3obotZALEmcgbx5BMg5C61k78hbY+d4ymLFCCXgqQXGnv gqhIDFEnoZiO4xhSnJmyQ7rq8nObmkEKTbulAULLatRwr9KBg4CUp+4OML/r4CDz3sew2Hik cx9DhEIUNBzHpXI1Btwbi1ZyqshjjRh1eUpTn4bDdQnEKjuqkJ5tW/Fc0rZChEbZaQx2/Sz9 AVyWWtChjwYWcrYY2zXGRdxAu+G6hbjhekWlzNtiv/lTkPMb1GAU4nIDA6GwLqgto5lz/Dr8 uR9jbDscedq5t19L+Vv4P/7y5Y9fnr/8xW89CVZaUfIGrOza36bndbPX8Q6OmK0KSDYTCwaV 1AEjguPo12NLux5d2zWxuH4fEpXTwq+B9vasC9KqHIwayup1Qc29AacBsF01BhyWD3k4qG13 2khXkdKgydS6iI8gmtnn4Trcr+v4cut7Bg3uDjqWzS5zHo83BGtg9Oy0RJ/DxuKqYe5T1F73 764BDjBERlMI11/C3smAbDXgtGibjwCB9gSS6afCJFkMNS4CeolgDekZBUaYLI/nzBd2hQpI BszaHpBuaI+jaorIxs6xSOvNdD67pz2QQ5mG9B0Xx5L24ROliOm1q+YruimR0ylW8kPGfX4N rEvOeNerMAxxTCtadYXzQYi57ZDljpjbIEXDGIgE6GD4u7MYsHzCKBbIxrI8TM/6okom4+lZ Y3ZJJr8gniKVHvlLIsmZm9FmFqM/edA8+2N7GoT0YBAjXgATrJHIc1j3Rcl/IJX9nIkt5271 D4iTF4rxXrziyFhorSiSa27WCoUfDNtw1ae7e1+tlEf1Jz+nrMuzTj6e3pvEk94I8mMJnDyp IBnU7AFcNthZD5EUIuCGzOzwHRMOEcHYC47QRPVRUjLgRRUgrWs/RVK0xxM0G0xPB3h9evr6 Pvl4m/zyBONETcFX1BJM4OYwCI7eqilBUcUogo2Xk0lR48R1XhSU0iQ1OipSw47rsXU4aPv7 qkzzFm5LZP5z5lnRHIsM80PNJSVOI3qmcw13EhPoZFjPiIZRd2pLfzCLDgrQ19HuMc9AaHOV XRUrQsWo8yKaCMtDCZJwS1b69sLmPLSiW/D0389fXPdMD9nzZ21+dX3A33Cx7PAkJ7S22qCg q9awpdZJCZhJ34ZmgEbzz919nma1/6Px9PRmC4qNTgaoBaW0AajQeeI1Y0q6iNteWwZGxlww aKgN/SHkG5EtiAgSO81JGD9lTbG0CDGue/1ZGTkqJh6rPFGXJIJQN4bEpAkt6rerMvrWQBhs Fx4maHJvPtk4fFxJqo0KReDQTgBlX95eP76/vWCmViIGBZuMSvjvjIn9RQTMsk7lGfFXpMIU bDRRw0YqbICFnhfACDOetgaOG6dUDJ0x3xfI3tKMXzeI8nBK0Qk0Z1IPDBBDKXjMOANRUhP2 meDp/fmfrxf0VMQlkG/wx9VJt7sqx9Cs7vntF1ix5xcEP7HNjGDZpX78+oRpLAz4uh0wEfa1 LXcmpQhCOHwmTZWZDpIDuN1sZyOit2G3RcPXr9/enl/7HcEkJcZNi/y8V7Fr6v3fzx9ffvuB Ta8vDQNYhpJtn2/NbUyKguauC5GrHrNzdRV9/tLcN5Osb084WeeJQxh71hav2Djrei8inMsk jzza1pbVCbphEAQFeJQ0ELHn15QX9jNdDIB54uIf/VCGlzdY/u/XPkeXgc90V2RUvQFmoXZu v6osxNXv/jqQay3jA9efBBJMBxd0Dt/W4u4qdvvD6LhDdHRC87NjJmo5SmOUp2G9UmcB0Pob FIpmUhpweC5CPayGXrhNXZDG0L2LuhKS+j7T9fGEL5o0frtXMRxbEMbS17RjXGOJZmz9Fqn/ 9kmXsRFzJZ7KjHlGAsHnU4wpCndwF/j+7iD7NUaa9nCEe88mYH/Xai4HZTpWCVEXDaaDssts UJQkbjbc9jvusw5te3BMAhQQhhApnRgj9PU1TnBmT0fu9kRQZIhn63rs+w0NT30XGfbVMKGD 4CDrRYEx6nVMX0W7clZzSgUDq5hUZVlVkiaJg9KwfvCjjt2XUu7hJAHrrBx/+eSgOtObE2vV DsURLTLg9SWd4nWful7k+At4gUL5jhGmOMGk9gZEDshWVUVEILkop111/UI7ktJzQ4Gf5hDo IU/VOTx8e/z+3rtZsJoo7oyrBOPiAxg7mawXVTXEcnAc9xbX3RFBWUSVWj+YGgTLfVj6OnoH XBZMUrvS+nXmOr7Redj1Jt6JwBq4hLQzZKboBH8Cr4IuFTaPcfn98fXdBtFN4sf/8d0/cJri I9DG3jB3/ZSNUUlKy5GbBQ5/1YXjeqEauCN2B0xLWnvZa3VSe02bBclyTcy3dZYBImGVSIOd VIjk5yJLfo5eHt+Byfjt+ZvDrLhbwc0AhAWfwiCUPSKM5UCI+0/8NPVRZ2dsEVk66CmC04x5 LqlF2AEf8IBGUhvRMWggduAjzezDLAlLN4ABIUhhdyI91hcVlId6Ngqd9z/fg1OvSBFomxvN zBh/wSHmgvQGbAasZtRsqdEqS7LKhqkC4t9wuU2YMj4ZN9wISaDLYFgOrKAYlp5A5PJLYdP2 CrKk31+xQ68UkjaM7Hkr8Tx+++akSzBKNoP1+AVTJvUORoaap6r1VBiewcMD5vTiCZ5czacy 4BHSsDQ4LEKpVysyMZZpfifrfVX502WjnzEdThQLN3jQTFwS3K0rYkaVPGAx249Q7+ZjcHnc TJejLWi5m9emS2Oz8fH0woLj5XK652+Xnn7CH56Jqj9jiAXFIJjqIIvavXeVe2/sFfuKzdPL rz+hAPf4/Pr0dQJNNdwJJRiaDyVytZoxvcA09O26ebU6gH1txqaqp+3YPjrn6GAIjTzk88Wx 57vsLpou56veAdVxO03eSaBjos1XyqB/qDEXYJmVmIUNFdfGQ8qHAo+vm8zrs/mmx97gFT3H mR7oRZ7f//VT9vqTxFUaKF39GcrkfkGSkNsr6o4uFSaxvR/gbOhmGqa9dDX9aqGUqCc4iCTp PbzFoAB3QPkcWrp5MTX8xXLb2JnMI5YzePz3z8A7Pb68wHkzvfzV0surlsWnhKadIMTQTLKb FtQ/gwxWUJJtiAQzxMYl9fJRh4RpDwY3dAfBMY7VLkW6z4gZajhTsl0pIjKuoIMDiV5U9IjK hDPbtyiJKM4hHfHQdS6WKCct5n1SbxsYhe4KmaS9TEPXGatSwfPhBiUCdl0xhpkO6RytZ9O+ /WbQz0qSEw93guzzu3aziLNKpSIgZVVt0yBKqAYjTRbrU1rROxdl0dWUY+oMCsqlZF0QF2+s bsUotK9jQdl7HEWXCaaeTiTH1NlPhdpztG/L97midjz1AoGz5Y1+drxbAii0GKqmk+f3LwTt wP/YdziHLRVKZqPHNlD6mKX+Y58E0MomnfvWj+EaL3bXdMojo2/n+Jw4VXa70tzU3M2aq5Zc m2mLc+jJ5D/s/+eTXCaT361zKMNG2ArU/XW7qUFH/PhSp9jEBiyNExE+rUyJr5hzz6R5qr2j h+Wtnv/+JAJPl4ZAPHi1jjwfYfPVyijeIuomQbjl5WxzXsUOwFxDPZzBy1o47NNODQrqS2yi OPUhi4M+r2IQduGueeV5Pu3D0CXe00O2gH18CncDmmSai+lclgg3D2R4usrDLpFwd65XTt77 wE3hnnkphLMI/X1L1D0RnwAoBmIEpZvkEQoxxKD0ArSh8JjtPnkFTVS/V9aeMLfM043C79RN YZhFrW+QV2ZjT/qZCZxsrjaS23/ziCuoc2/btaWsVu9arY5UlFHtWeOzImCi2mzutushABjb 5bA0zZruteWuW7PxaTbae6D3WuyNBrx9B+fj7cvbi0colBZQgxpQmjcpua6TYItM9tKaDAgA DD/7XhNL57bShtelJ9hGO8Z1rUWKmEzAAlPcjtZEM6LWeAOrHFkfEvlzwdhW21ZOXIb4FiHO MsZtsEEIih09hm4ebsB1RT9p0sK5IcgAhG30n5LBmcmvWgpzaNBVhUSwnj03F+nWCAvtT7/1 +zon4TBtFJYOZKVuprAKoWjFOtZtFw2Srh8SQg6XhIwRMsBI7Aov274tlb2CUhR7lwI5hWYH DD7awBi+2EUZOOe2Tmzu/HR8k2Oiae+sMNVw78LtohfxeTr3E+0Gq/mqqoOcyecbnJLkAYkt CVW7BFOp0CfwIFLuTRh7hSYKE4HTGpdSRYlZZmJdYDm2i7leTj29pRGUak0G1AEHEWca31bB lKhK+qbMQ16rmHb3M+YkmYEQETLvQRoMvKB7Xn5tr/JAbzfTufC9wpSO59vpdEHPjgHOKZVd u5YloKxWfsrCBrQ7zO7uxuqaLm2nblKFRK4XK8dkFujZeuOJyDlmXDiQTkZ4rcOU1qHMF1cn o/ajPUWP6zJRMwyEddKpdRCFrhyGTvtFqT0xOT/nIlVkDOXcv7Xtb9jP0CFR1POZmT0bEhrm qHV8H2SoM+WwsebOFXstXLkdaYpHnsBoMBJRrTd3tNt1g7JdyIrSpnXgqlquBz1SQVlvtoc8 1NUAFoaz6XTp6iV7Y3Yuhd0dCOL9k9dkRvvz8X2iXt8/vv/xu3nps8no+oFGMmxn8vL8+jT5 CmTo+Rv+6fIRJervSUL2/2iXom2+Wd56WqHJIPd0Mg3pYRJ8d9A6YQI3OoSyojHO1iPlnBC+ bpjf7mUC7C2IVt+fXh4/YJCDbXfO8n6o6LnPQrQR4CPtOdtKHmjqZo6UiCXmfuI03+2p4/Ry HfykvQQLB7ETqaiFIjvu3VQdGTJJhNzobvvD8qYvT4/vT9DK0yR4+2L2ibHK/vz89Qn//ef3 9w+jXf/t6eXbz8+vv75N3l4nyAMaidW5D/HpgyoCpsaPJMfi0rjHar8QmCAvcyy+utamvxxw IAjVoqTVMQjcj3NCgCIpfa8Dh+443XYADWPtfc4kR1OZLJkAoyCkmHW7WWHu0FQBBe2m+vmX P/756/Of/dlsnGuGnSKenm4gMgnWyyk1gxYCl8SBC6BzhmwFm86zzuky6TnY1hzzE21x0BK9 ntOP73V86+f+mzMDFBHKNSdcdDixmq0qmhnocJLgbnmrnVKpalzYMLM73kpZqCgOx3FQYc2Y HF2UxQ+g0Fehh0KbuVuUQ14u1uMon8ybYEzkRitFydn8xlrmML3jp7fczO7oICwHZT4bX2qD Mv6hVG/ulrPxqcsDOZ/C1sMcXz+GmIaX8Sk6X460sr/DUMa35wYOrOmNKdCx3E7DG6taFgnw yaMoZyU2c1ndODel3KzldDqMrck+fnv6zlEVK6S+fTz91+T3N7h84FoDdLijHl/e3yaYcv75 O1xY356+PD++tGm8fnmD9tFs9vuT/wp725elcXAcZOixRGJZVRTJDEo5n99RzhfdGSnXq/WU zIB0H6xXN+bnlMAE+fva2q0xeKyxaw7YGJOmqffqQCFUYF4cIbXAUMERHLB6/7llLOOuK9OZ phf2zaq/AsP4r79PPh6/Pf19IoOfgOH923DCtf+ExqGwpbQ43FWiXAC6uo7805W5TzaYcXQy 6WCE8Dc6PZNudwYhzvZ7Lx+FKTUZzY0nbXslmikpWyb6vbc2RuuOazHoQCSHi+RjKPPfsZUE LkgzzSMkVjvNGA4tTpFTfWjN672B9SrH2cU8As43Hxz4dnsb2tOG0TwyTV4b9U1flOrg0UlT ebMwVnYyW2yXk79GQEAu8O9vFC8TqSJEP2C67QaITnMP5FBHP+OMTUgQeTJ8C884XlPLnYal fSPc1ZI1I/coTpYGXGC40TOREBzG/sSFL4T3Jn32SAYRTsOGmrWQ0YzCqM/cs8wqZ0HnioMg w8mElO1AWjwx/l17zvFGSN0PCbmOS9pE/fSmPNEdhPL6bBatyDQcT0a2vaEH5mLD0zhhuC9R 9OPZWyecj+/Pv/yBAq22AS7CSWXpGTTbQKUfrNKpRjB3sGc1wuGfwzQAcXjRM9eHMc2vLOSK 4cLOWVEyTHT5kB8yWuN87YEIRF76b1I2RebVyUiRqlG3gX3YezGhnC1mXEKZtlIsJFqcpacl 1+hor5mjf61ahn72fSHDnm7uCrLamZJ8BtNtNBGfXZcED+QrspNgM5vNWEtFPBKqCa0uaK49 VWt6efFJl2q/40OK+VDCDlqfKW8Md4hA3NJSeTyQuGcymrn1Cn/fFLIOufwhCKiBpTqix8GN ZvHE+AY/UcZczomYFp0RwLw4CRBut9zatqciK/xpMiV1uttsSN9Xp/KuyETQO++7JZ2pYicT XDmGOUwrejIkdwxKtc9SRhKCxhiufI9L1qpWaB7HPD+KCm+ubUrv7s+J7D0NuUsppzqnTuOp 4XkjCMkE6uNNA8saBgLOQm9vUk2f1SkhyYA8hLH2kws0RXVJ78AOTE98B6Z3wBV8jm50WhWF r8aVerP9kxZYwxzV+n3qRTWqpTfYPoklqpgch97p2IeJSlV3BdIDrTCwmLEKpmRMlvPRwL+6 bAav+BaFCZo8CNcPxXPasqxPadCn6MP2wuQUh77IHM5v9j383LiJXSfZlNRprjH7JdysCUaf 9gnBsKVIFHBpe4riqITdzgWyR+V+CCWaLcIQs516Zy1iGEJ0v4wShi9FYH4PEgyT7gTh5nzy KHslUhgnWx1naVh9OCj70BR5xrtYP8/AoKrVIZjXferhIKAoy158sKDTJcsuHFKNKZroHCQI ZG8BAC7GR3o4iYv7Iq0DUpv5qqpoEFqevE1J7xMsnvbxpow1a0+TZyg/MwnjKq4Kyw2pJft1 emU+0U4c16loHJ69m+a8XhIE1IGzGzhBuYeR7M95Tl/peSVm6w37OX1klKD6+HCD6UtgZCLN fG/wuIKtSh9hgK14JQNA9WUUHF1u9EfJwt94R73ZrOi71YKgWVr3ctSfN5slZ0vsfTQbUOFU zjef1swFmspqvgQoDYYpvYMN8gNfxRQf5AFMHgrf1RJ+z6bMOkehiNMbn0tF2Xzsek/aIppn 0pvFhvQKcdsMS/Qg9CilnjM7/1wxeYPd5ooszRKaLqd+303+lP/bBblZbD1a1fg5MjzjnDO2 AejImrBPccm4x1+CzfTPG8Q6PavAl8DMKxEBK2fm8gfGnR29qUPvGo584uvnNzg8m7cXPrtX ac+1SZgnLsmGH0LMFhGpG8JkHqYa37whd8B9nO2Vx+ndx2LB2VvuY1YSgjarMK058D1pCHY7 ckI/hsQT4u6luIMdg4puutEGfhKMnGSTCXAMRJHcXOYi8OamWE+XN85vEaJqxOOBBaME3MwW WyYfJoLKjD70xWa23t7qBGwj4SvuD+xdV4gz5Rbmtoc5FQtyA2mRACvvxa1p5CRuS0I6dB9f cwFZLIoI/vmWFUYPDOWYmUXe0qkAByp8qiq38+mCCsL0avmzqPSWIWEAmm1vbA6daD/UIZHb 2ZaWU8NcsWIGtrOdMSZmA1zeumd0JjFvQOWF4Wm4ArjMaQjDUOXwBi3TpbmFvWbLBCWQ2zvi 5AsIIs8fkpDJw4G7jvHclpjKMmUuYXW60YmHNMv1g58r5yLrKr6t5ijDw6n0LgZbcqOWX0O1 UW885XJwWK4YcGQOrCOm9dWMKa3BoWE9U8iw32f/WoWfdYGvMdOsCkDP+NQX/VSP0+xFfU79 7PC2pL6suPPQISxuSd7WNdVtvHFWFdXIfDc4cQzryeFEQUDvOGCCmfvLJIjdsR5IuLS1NczR IszhgcujaXl+5Oa321XC5KuLmQz2eU6Xa1r9c9I7mxDZ2hfduUWQFCU9YQg8giDN3EoIzsO9 0Cfayozwoow3sxU9e1c4LQAiHIWKDcPrIBz+cVoCBKv8QNO0i71qnF9Xq1BiuQMK5oc24DvJ fNJIgK4GLDPZaOJm3XdBjt6cgLaKSgLUajIYUKFVL3kkOvHSW61QOllRgbduo1d1AQUMgb1n 57QQfmZWD9axahTQ9WVxAW7OMre8ZPA/PwRC0yBjHQpTo9q1juwm6+/k8oyJe/86THL8N8wO jB60H7+1WERk6IWzbicVGspo6nX6pEp9qvmXJzBLkqLvW2OlJ9LkXhVFOmDicxwG8JzU+S72 OOe2bHgOGm/sb398sP5LKs1PzlqZn3Ucuq9q2rIowheKYi9A0UIw3bWNbfOK7QNIR/+1GQNJ RFmoqoF0CaleHl+/Tp7bp9H94DxbLcOX9Zj03xblU/YwjhCee/AeFCaw7ZOdNy4fsa1wDB92 mSg8E21bBlQsX602dNBaD4mSVK4o+HK9FxR8BZXHHf3x+3I2ZWi+h0PG0DgY89l6Sn5Axrm+ m5GW9g4naPLIF+vNiuh9fLS975dbKxEB8CP0vWKzC0OqtVKK9XK2piGb5WxDQOwOpbqcbBbz BQNYLP6Xsi/rjhtH1vwreprTfWZqivvy0A9MkplJi5sJZCatFx61re7yubblI8t9q+6vHwTA BUuA8jzIsuILYkcgAAQi0JZiAij2w90ubuSndxu1H1zPRQDSXsnU3wZGQNC2vFHZmmAFICoA nJFiefVMGWKL/IjWYN6+7tXg1NXFsYL9M4/FjRWadrfspl4TSSCPeZ+j2vTGdWnxEcPy5Z8j UPWeRB7WleAFJUALQ3OfTcndkU0bb6LdJT/jXTBSvJx51rMpgzfyIcfXjW040HveTTvijYtI q3hj0hHC30hr+UKZsjaruxMG+AVGLSqEmneHIUPop6OnLFgbMKC6soJPsnfXDblUbLo3qqf2 FeX6VZbjOunKRaqivFXgW3qvDLSRfQ5uWfDzUSswvxOygJ7vIeAtG4ZK9S+xYmBuXtvM7rYa QYTJbsDOqVSegxLgd8MgSmCJl4DequJdh+1KV5aHc9meL9gIKA4pPgCypszRM6kt38tw6E5D dhzRFDISOi5+S7PygFZwsYRlWpnGPsMOX6Xeqe/ZoGILposWpCeQgvUUduMbB+x8ZMWPpMoi xYRdTF4ehskS9k0wgDgibEdruUGbJQQei3NoqmBSg39ykuoDGCiqp19OaQ4a5ej4JoX7jOg0 ulfMjxt1ftc1KJ5O8RXNZKZh2yQByW4/Zkq4KHvnx5dP3At19Xt3p5uRq+VGvGloHPzPqUqc wNOJ7F/1wa4g5zTx8tjVXjoDwpToe4tbgZkhr3qCXbYKuK4ODDbTHTLsQlRgs9mi+E7NjHiN iD+hfjDkGHfWHxBqB3dHWU96o20ubVBNaGmFhkdsZxTlgJpdgHRRW3uhTC1hWjdCrxWNYCWX zcV17nExszIdm8TRWGajXWx0bY9bke2Z2Pz88fjy+PEVXN3rzg4olbSOq/z+WxhFi9ipIo4s kTkXho12vpk0xreRIYpvobzDgCiYaTL1VD3/Fc9FORnpjJqHowOf5eAMfpl35OkFng0ZznaF fxkRtDRXYuEKIPH4w3aTyDbB/QAWXTyit1Z/mU9xFiMDbhSGTjZdM0ZSNFmZ6Qgqxj2OGc2p ZCv7aZOBcswGHGnKlm0QDjjYDvxiD0ICI+hwaSFY3cqiTKstZ1oyLQhb/WS22XXVFdKyNP1N hJ9HIZw+UC9JRhxjcsJNRgvIxmB/rkpLk4Ea08pPddV0iaVXm6rAAe57zoDA+/f29Hd+KPft N/iCNSIf2PyZFvKsZU7BcHuowsseWxeIErSMNnsi290jShdjYwr2cWN4Leg22PUSsm2vj9tu KQxY5aoG23zNIJSnriiW5QK93Sgr5zp/XL2C54kgc1WQt888HLfJgDMxXVAakPVrVUGTiDvd 8A6Nvz2D/OofpoqR6opYC0OqY3W1ka1f1WDq/95Ctn71HqsZyfN2xPaPK+5GFYl5eyLttsJo 0sunTAH+lRxUn30CZZL3UA5FhnbLHHjAqtiBcBBq2DuanXTbDZQRFcwSBhMOFBVzMstMh+xS DGz5/Ifrhp7j2ErFed+cZtVxjMbIUGsZArZAVouURUCMhCkMu1Wf7xx7stReT0NlwEps5Mr0 zDeLlg0WOwsBD71NI2cgmAvXvaW8G/h263LeqgU3Bmjfa/iOkMjByIEH3KlOVc40NOxIZBn0 EMjGXFoFeW89YGrMg6s6QtCS6Adz/QWiXQaBw1ds/nJHsL/S2dfycDF6W1vmbzWSBaP+SgZs /u+sgFV9KJlKPF2Ivn/U0WmZuUYNFC60RKu3bkXX1nPL6VAvJ+x6Jq14q11kaLjp9exX2ZbI VKHIY4OjnU4Wz2pt99A1qFEIOEwUWW12GBDih609LeYN9Hxdoi4ZbQyP1hUfoRKdNwjLR/OL OfDTRWXj0+/M1b5X7sbmJ6RIS1R9U01n1sg1eiDJ4fucTAfZd+yslAOdMyhg2+cNLE44On96 oDIml+Ywm1WI49Rjhj5DYfvEAewmFZPElchDZbPNueY90mDT7so3QDx/NMinUnFqtAGatY0M QLvvF6IZp6E95XgCXKTgpisrD/csvZtHQ++xYpfjh1Z9crhh0Iu7acLNB1UCx21YzgaxrPsX VL07hrtFJvAt7+u69kOPusO6ZYrmJwJp6LKjz5PYj/7kdGwas9VCvdBjw40NFOXve4XQXpXw CODIX5/XEOKX0yFckRdGUlrzPN6auLe9bcnYKDiXcPgMwxcpO83ZjxyhVRrxMpnzVURTQGeq Ir9mRoK294IyZVQ3VZEhttRXrfY6Wcbby7Wj6AAFrla1ugSSbXsKmJSZRM2Hg57IlUIg2aEb sbuDtd7U9x962QOhjqhH0QaqKOBMmORzcKqZwtTA+oMi6BfK4vR5CaVpHLpto03073CBmMj9 RR6HEgIRudbwi8KQgG0hTLsLxYtfDg63WQ91/VCeKrlRgcqv/1h7K7MLAIi6k2GaCwfP7CvF LIMRm8u4FKv5+eX18/cvT3+C7x9WRB4JBDmq4INuOIgzWJZoXZct+qBiTl+b1BtV5K2kC0BN 88B38McQC0+fZ2kY4OevKs+f+zxVC6v6TuFZ+6tlL0rpQ7NaTT3mfV3IQ2i3YeXv54iZcCaq JkzUGIu8B+pTd6ioSezzI0bM5NG3nj9DREDNtVOf37HsGP0P8O60H61VJF+5NndmKx5ZXL4u uMULHMebIg7to2F2gLCHsx0cvlDzNhfvKa14ZZzhyyDJcTNMATaW6zkGgk813IKdC2Z+LWwv lHidw6bQxcrC3Y2l9m5heGTxUzfDaYSfRgDM1Ko9jEl3w+wMZJptDJG8QbyGgpj868fr09e7 f0LgyjmU1N/A69iXv+6evv7z6dOnp093v89cvz1/+w38lf3dHKF69GkZ5FqvLocymmJPHDg0 jlWmyeO88RI/1BNhZKY2D+gzpgW/71o9sSFvCD2oxBwWJl2f4tJIGLRbO6MoSXVquWvWXdcJ Ou9ekjtHAoCXR20Pzoknz7EtTGVTXj21vkL/NVrUojmKeXw611mrRDnms7A56QS2xPRiuVXn a9drB3AS+O4hiBNH/6Tucw/bYPLFQI0qw0k0Up45C1ocyTZdnHaNgtFgHLUVYN7N6WXquEWX pVCdan0JFPUwg8umPHt7sPQNG6bYYSsHW6NY/WiXGMLdOGqUvcLqoTSQh6oy+nC4Rx+7chnj 517gOtrCep4atozKJ0lC+jVUdsItaIO2sM7HU6oksw1yvl08BloKnBjrxIvv6OW8tFE19d6t MjL80L6/sK24xYSYcfC7qunQN7beMq/OZOqk1RpeK2TUaLJbQ/WiiaNWS6ZjreU31n1qjuYh z8zorOWfTB//9vgFlojfhbLy+Onx+6uipCgSqwP78YundWlRt5rcMaKe8DJ0h44eLw8PU0cq rTVo1pGpvDZ6uWnVfgCbL6Pss2/NteDS0qYWuqzLe9ppjbRpl9p8rYjmMpLvwG1+aOCrI8F9 VFv1Q32go17xOVSL0wCVH4izY/adFQjis1if7W8soNO+wXLQX8BI9TOUb18aGXnREqDMsYHl ihQ3CcCOcfVITbwoKmlNVaaV64UxbPibxx8wlvNN9zbMzbkXS67XqCllQ+oHo0aj5zjV2Zqs yCY/lgWN4G1UrweCmLpsMFuvQIBlFJ41xWNsK9usKeFNt6CZui+cEf12zESnMzE6AHSs9ya1 ooes1TrmcKFwrFl/UMmbfyeZuF3EK729KFB6+dnAKSwPymbYHniLgU2jncIDmQkvyxervbzy gTHhFQxumfDDpgXfDUU2XRUL/SUaGVw1Gd+o5wE8tlgDv4+VTtVSfKe71gRi3cTOVNeWx3fA 0CdJ4E4DRS9ul8orhioz0Sg5EAskfhrX9eB/ueUWUOZBgz1yjkU9VL/jCqL1k/s5BJ3c8Ewx nI7VRU+J0/VOVptK3Lpr0WQUlk6sbXYcoowG1qlKK2Q68vijruPca+RBOfnioeeqXDaVXkkT ea+lyfRNTx+RgjabXCml3vEEyGGjyJihBCMzJTMK9GxJ7iZst+1oBQfdk1TdUafqZWN8Z/vM XK0u1G/4attQL7b2hHa5OlNmS341Mf2mQ8eQLiUURlFgJAUmnbakQMfVUlmUW225HFXNnw8s 0HJdF7P2XWHPYaJKDxGtoLV2YahydX1eV8cj2CrYshlHbaVF7NIYddSddnCiTV/mYN1rSVDw UMJ+HftTpif1wBqO94olNcCbfjqZHScu2DZVRDq7NH2dQ19sB8jAv8TSm3UYTWNhP1rQOy51 uq4/ZHC7ggdG4g1bl5E3asrKomgaAx+uaTC6cBAJl6106GqZo9FGfcNqRhr+vAYOu/FrIYI1 b9+rsQF7YnmHyZC7j18+i8g/etPCZ2ywgTuhe37ptBVWgrgNrZ7bjM1bGbTkEpt+pLIW7d9P 355eHl+fX8wTYtqzgj9//C/sdoCBkxsmyZTroTjlt7rzI3x44dmW9NYN99zjAtSU0KzpwV+2 9Gj38dOnz/CUl235eMY//q89S312roq/Wey1RfXD/DlQygJMp6G79NLxC6OLcW/ywx3A8cI+ Uy2NISX2PzwLAWy7DL5/sV9NLKXKiB97ariyBWEKO+tXTBiuLKof4YV8aNwkwWw0F4YiS8Bq +dIXauUEljqRZ9I3w10jvybvPZ84WBCHhWV4yFzsU0bHVqUNbtHPCBtbuGHGwjC6oRwmbqXT 5oiQ4TUn09AcE+mzulHdCS3IbI68V/r7xAmxT7u8rC1BC1eW2/6omQ+8Ufp0CuxQaIciE+K7 OXdEmgw5L19bhse5sJzzLkz5h1N7IZMyBRdMn3SC1pvGCCvmQUI7ucHX2lWlPAPxO5S1quXA FvXpcAosrw9XxuwDHbJqr+fyczkMH65VeUOm2Ae23YLogiZkeNBcsxy6kVoc1K95Zm3btXV2 b3GmsrCVRTYcmRjfkxxley0HqpojrBKWu+bV89FrwsY+4zCr+A6G4TBjRtp1eavI4TJg75XX yX1ph4qUSxMaadDqJDLYbYb5SH4nH7YFQQQF25eEyFgGeoyJHNIgM7F/nzgRNnsBSAJ8tr0P HBd7iS5x4KlyIMaByOGP6E1hT5okivZWF+BII0SWNkWTRi4igOCLESsHT8pF5BIHYhuQog0l IPwWWuXB3TssPO9zEjh7y/L74uiN+FLJt5xcM9UffaOM5CAY0TUwj93dVZ4UTaSaaUtIEmAH eCtDk7gh0oOM7qF00xXeAolbwL284E4HW2G2fbhZgfPUo0cwKoN2SiWBoN1ZUPhOu82UoSHJ Yj9DB9gCx6inRJMLVfs2GPPuaXK9UZK9Xt64YnSYbHiGm0+YjIdfZcx/qYliVARtcPpruVki rZl8v1j6dE9n3bh8+wiKU0TabWC43x+pxYWxyWjxOIwwYqeTCBsivTc0xhToFU120fSNKqdv jWRyjj3HtyUCaIQb6xhse2vpzORnlsowLPasVeGoxSu3zoZbUxlsv1Sn2P81tjB+u+pxYhkD HEOWZIGNyGxQjy9lKrgoTTAdwngcogDHwNsXCTNX9CtccYBFstZ4otRamLMmwnGupnd3W51W U9UVTGf+gGW0nEwaZzTN06fPj/Tpv+6+f/728fUFeY1dQhhzxXR9VYIsxAlbE7kDm2yokC0b HF076P6d34fsNw5n2e+mhiauxWhRZvH2mhfK6KLVimJM2AE9ja112lsYoCwxKqAASfaWe8YQ cjUY+TTy01htg8Vk1TYEjH1nl5/b7CQ/VV+TB5tnZLfDVOC4xlR5DqTIxC3fX6q6OgxKMBzQ wJRbu5kwHTNCe3ADWVdNRf8RuuuT3O6o6W3chHmOH62lUg3vZ0f8MyBO5fRjBJ4C+UCOmJrK QSNKNKdyH2DOZnv99PX55a+7r4/fvz99uuPHH4ipJP8SwiHzC2F08IoaGQaPGt4UPXbQLkDD IFIiT8RyNCN4VEMDThvYhwc4t4B76bE30l2MIG1pAj6eiDgY0tI2TCWFSbp+YS+oxo09Jxe3 rNcTKKtcW14EuTEKDz4a7M18pPDLcXE9Sh4cqLmdwjcgA/dc38x+qiwWyQLssBtODnGP9le9 hQ2XCwtVfbEuhvQhiUhsUMv2gYlRo5xNz93L2ctqvfcW6GjMqJEYmfDrm6U77VlptonK8M2z wUgWf8MpREHWZGHhMdHVHS6moOCXtfaCkKrDDo8EBmGYcuU5gqBrVoiCSPtpvGXYC5tFYuXq QRwn83tQe/HEHWuCH4MIDhLggec4Kt2Fqp9dxyTEF2MO3/ICrJpsyYqogkSfxqvTaoVYmyLo wZoyPB44zkEh15XRKqnF5djzy+tvMwrefTRZrsiH2BW+TrRJSpN4Z4jszW8G+rgLzrl3wlA2 +BKNW7UQoVanEjfKg0Su+W7NVot9Tn368/vjt09mjWcPqObiIuiw6Fq7opD98wiheJsUW0hp YXVMeQN0z9o0/LGQr4+WmQrlMpBjEhrCjvZV7iWumTubF0YEBMkeUWs0oRIcC7MxtWYbqgdt 6dQW1yINY7e54R5wxQKYpU6IqZ4bGmq1VM1m5xXBTwPfICZxGIVIVxT4e4y1o9T7NNHgy2Wa 0qzCMafRCyQKPdccZhxILM9aNo7UtbYHfd+M8j5ViLX84AbIkLudK3Jfwiv3K3arIXiaxHdN GXDjJ9G4am6Oi/ndVvXmeNl5KyXGC7X5dRddUzMNYkf8GDfvKsh2o+Cb391ZPxhTKbgshxPz +sv0D0scDyEHO3gXU1v8HiAttdqv7Iovpnq78l3IMl59N0X6UEiindZuct/HL9tFW1SkI4O+ frEFOJiPqhY3DmaxhQ9tcsAGxPwVgqry9nRiukamWKCLUnf5/UUSxTd32cS4v/3359lmfLP+ Wat8c2fTZ+5MucN7b2MqiBeggWFUlsSTS7LmIGuH8gfurcEAVbne6ORUyS2NVFCuOPny+B/Z KR9LZzZHOpeDmu9sjqQ8Zl/JUC8ntAGJFQDX/AUYUlk4XN/2aWQBPMsXibV4vmMDXBtgK5Xv M3U3t4GKdJeh0MEWeZkjTiyFjBPXlmpSOrhAUplc/DhFHSDr8UZ3g9e+V2lVEy+hekVDFmxD SdCwWwIll76XDddlqv4IQcHOt0a2se2LTOBSA/EVaoJxpUx7QV6Y19KCDZ+gIoU9ZGBi/2FK kr5JItnIBh6nn6A1mCboREo3LB9lOU3SIMQUh4Ulv3mOG2IfQ++iN88ygzwuFDpaHo5gmsLC QA5qGOS5ioyMfCTiBw76R0tah/dgyouN7LU4XJFDC5qlWrgXjYGtVG7sBEjtZ8SzIJ667C01 XLoXyXJhqUgPCZsDgKWbpLK74AUAbVI9R1gQy5HUliJvWSRF6keha9KLkpY55RFURjeIwshk EVfszeFgQqynAjdEhjYH1KsqGfJCfNcn88To0xmJg2nDaAasqH6AnWUv3XnKLqcSXC94aeCa vb34bsKG10BDx8dOoJfMB8qmbWg2CMm92Efa/5IT15Gt5dcKFmmayl6bNenF/5yulXIeIojz yzLNxF+46Hx8ZXtY7LxVeKImU3ao6OV0GbAYaAaPNHRXrGD1VG3hNyTAbdZlhgRLsnEd+d2w CoR4ZgDh2rfKg91iKhy+JWc3jlEg9WTpsgE0HnUn1xvku7iz0I1Dec+rAq4t1SDCXfFJHLG1 SEGMH1OtPLpBoIHn83Nv89Oxmo5Zuxin72Zzn9DS4r9+ZXGdN3mOWeOGZ+tqvZasKSC263D6 gDQ2j0WjugpbsYHJyBx/g7C2BwRyQ5LVjFRXOh17ZOgdqDv1V4oVYoamrGbFwRbehbEgkYf2 O9s1WB5gLQxlDeZNjVkusSazkZNbMHSeVuE9a3P8zcHadWDAFR53SsVPF73jCcvhGId+HO61 xomgXdrkrh8nPtRoL2uSnxuk946U7aouNKMlMcFTHboJQRqRAZ6DAkyjy7BSMmBvjovDVy2s 6Yydq3PkWvyibP0T2iKMzhzwTvHN2aef82rwu1yNFiCobK4OrocP1Lpqy8wWgH3hWe5rd3IW WkBoZi4ARMLPgOrESgc1l7gSmCISALxAuSEqKQHy3H1BzHnQK3WFw1LLwNN91MrQniwAldF1 EREFQORESH4ccVN0ugEUYY8jZI4U6RF+KiVeh6CIjzQ5Q6II0yk44KcWQLVFVCB016FwqPYQ ahnR459NEvW+g6+kNI/Q4Ijrp2V79NxDk+v647bS56o/7rn3m8hHR0VjeQQgMeAGKxID7gZ3 hbFJ16gmjhsdPVOUYEstkv0yJGhX1c1uNzEYGYOMiqjJjBp6fmABAlwWcGiv4MLrJDqdAQpQ E5+Fo6W5OL2riHISuuI5ZfMTqQsAcYzMdgbEiYO0CQCpg9R+8/OjAyTzPWQed3k+9cmkuThS 0HQiB9yR9MqErD1w55VK8qFvNFe5Mx9Ohv2BhzXJoQRDv9IEqkMz5cdjjyRWtaS/DFPVExQd /NDDJBkD1OcMG9CTMHCwT0gdJUzrwYalFzpRhACwqFkmp4DAreClhtP1/RXKT1xURZxXk10p x9cOrEYM8RzbCsAQfNUVMnlXRgBLEGA7PTjViRJkH9uPJVv80NlJe3grsbuGM5bQj2JkZbrk RepgOwsAPAwYi750sQXzoY7QPUp/a2YtUgNkk6dlhTFqR87U3WtLhmMDmJH9P1FyjvYa4gZQ 34c0JVMHkOFdMmU/cNC1gkGe6+yvaYwnguPYXSbSkDyImz2NamHB1hGBHXxMA2J7kDDisR4a dJHnuIeuaRzy9w9KCKUkDvcL3kSR5SAmd72kSNw9zS4rSJx46NEPA2LsAIa1eIKrRFWbec7e qQ4wYGsMo/ueTc2K8SuRleHc5LsaIG16F1sKOR1ZVDkdFasMCd4YasDivckSuthJ5sJwrTLw 9AtbO6wUDI6SCPfvP3NQ18OPpq408fz94t0SP459PLC5zJO4eOimjSN1kd05B7wCKxyH9hqG M6BjXSAgKMGU962y12yBoXvnEoInatFjDQayGX0+vpULYyrPe2cnq1XGrufSdd6Bt+Y3D9Ho vePKx5Vcrcxqg8AkS0YriP1ITKxsyuFUthBVDfLrjseJ2/dPDfmHozMba88CdHgLLfBtqHhw yYkOTL/aZS3KY3ap6XTqrqzcZT/dKjTeLMZ/zKqBLVyZ6tIJ44SAfiJO6U7Sbyf5q4UEPnAP Ns0+wtCEdsskHFFYe7hsLiIUH5a41bSbu9qauZA8wa/pluP6FSMnTYN9t7Lc+7vwYpC1y0T6 Mht2SkcubVKZLbL4XUKQfEtPo7IJ4JvQfTXc37quMJGiW2wwZOrsAs/k5k4sTDo8VtmIc0T4 16cv4KDk5SsWs5A/vBcTNa8zdckQGOnyqaAEa7dN8jBWP3BGJB85NWDBe2i2QdhNSy/YYaTC eHqvz+f65efdfPFG4qU/vDw/fvr4/NXehLOFv9kb8CygJdiAB4SgQ3EtkjVfXir69OfjD1bs H68vP79y7zzW4tGKdyFSCro3VcHfGTKCeQBynBxieRRDFofebk3frouwfHv8+uPnt3+jQ2yx MrOwrE3BZGWnT5D3Px+/sHbGOnhN2MqzpPwwemkUYw3AX/vZm/mW0fxcyFHMF8qkOxJcgba7 ZR+6C2Zps/KImDw8sMNUtrBSFkgWXV+23KERS21bm1eYvxla2un2+Prxj0/P/77rX55eP399 ev75end6Zq3w7VkebuvH/VDOKcNahGSuMjAlpP7H17eY2q7r306qz1rVpwDGKC/ekOxea1o+ W/JR26cQYXELRBnrjnRNFMlvvoozx4S4h7MAkW8DsKSE6e5G1mx6lxrzgNFVW9E8qy1L7npC vVMjeFnjRClSDj4XR7QktyJjzVSg41tYdJnJzSHzTOChqgYwfTMRTiY9WoTV9+w47lUvI03q RQ6SOHi3Gho4xbGAJGtSvPrieU6wl+/8fAxJ+khZwzkuluvsXBzNs7jtZSd8tSJJcqeYWHp9 OwaOk+wPdh4VAEmV6XoDxYChDWnkJljdLu1YoSVZ4ontlISwPTWr3wjuV7GRyt8LoYlTEnv7 acMFktZ2ptKKfS8rx55lNjAovtQ9oEq63QiRE7VvtvFVDUfQCHZzJRRe0O3VTLhsx+rFDc/w EgsHs6fxcEAaWoBoS5VFldHyfr/Ma9CHfbb5veDuvKZ1RmJsBJZtSTKit/hCHh4yvN7zy1Ss bqsP+91CD7Rw3XR/GIOmgQib/P2lGsq5yAuxuGZMM2YyXqtJVlcNhMqxjh5giF3HtTKUh3zK /SSwjABuFJKUer6kD102yWiOWUmSPIRZIleAsFyOFe1zD23U8jJ0S/WwiXOIHS3B6tBkRLES vmVH6BVLNavId5ySHOwMJZzsWlFW0x0wiV3vaCs8Q/XmO/e7IyN3vbW+W5ML//t4Jvza0fX1 b9qr3kXbCBUPXizpRY5oDKUHEz8yuzX2Ao2Y95dQY2tIvjwkNBE/PsRrEy3Sij+K0qsDZ6W2 TlgO6vYYkjjexdM9vMny84OluWB4l/3IJhK+qFWp49uamumksQOrpFx/tuMMYr0LZh+HBpE/ dtfbSqab3mJlttjxE+uKdeqL3FiwepjgxlDccIg1E+3gbBeTeXaRdGlqdHqIAxKS/fbPxx9P nzYNPn98+aQo7n2+t8RX4ClZfeaulWR5/PYLGVV4XnLKmhv+5SHVm4kznt2KECbN+o6Q6qDF QiZYFA3W0RnKDoBRPu6j+V8/v30EF7lzmELzrKI5Fsa2l9NIGKJm5QAuby70j7gfb7atwe0A +ZfEj2U7qIWmOazl/pXh9a+HXRTxjzLqJbGjhczkyBqWQi8ej2LBgw9ooUwNnnOdF7n+OWvl MHXQ1xYcXl7VGtmOvefYQsQDg+4SZaPp1hoSgnvxFl23eFLRepSRLc5tVhy9yF9R9RXBRrb4 n4JehF0xGnxpRdXXKZDovCm313BmUOwKV3po0mTvwyvNN2iKg0JOU540A0X4HmQKbUaIipyY tgweqxcjWbnHctdXAndJRNX+UQaM2jW9F3mpRhtZYYbMHKxsCxOyzZI2ExWWcxUFTIRb3EbO HGE4Gv4izxRCIpEqx6/6AWaF72vctwYkLM6I31+y4R6N4CbvHKy+SwAjqM/97Ridj7LDSG9q TDAVz8+0gPgVO8fZK28zHGvsHnWrVd3rQ2OjL16FkMbgsC3A3sbWEGtvzQfvDa+wVoL3JPJG PeN3Wfsw5U1XWBofeO7LZq8j+Zsu1LXHhmoTUnrlp8m10Q3CGLO7m+HFAYD+GaOjBgUbnET4 Z+jt9QongY98lqQO/iRrxT27kOV4ulNH8BVrZEojH32luICyoQunLQeFG7l84KFve5Uxn0lK dteqLwceTNhajaGkeIxRAPv8GDLxijXt7BMBWbXZmNAc3HKFAvNrq5bEfPQvo/wRmp7qkIc0 RL2jcfQ+kV9Tc5I4BVOJpMyRepAqiKMRA5pQ9Vy3Em0vFTnD/YeEzQpPT4sYAh+ezY2jvbGy wxjOLW9tTDiW20FFtMEBjTPPGRb3QRKNQuwQ32erCCW58uIFUN1BiKAlcZIYqdTNRaXxk1Cm YE/njmjiTvcKAv47XCdUhhf36WHzwiXAGPdGwAvEGSw+jzYGi5vYlcHTX4ZrdWZNgSpPEh5G mnyV/Jzo1CQyZtjs2sQmXRbPJ5bPvB2tdmUxNByGsDXDV2YDvdWB4++MT8YQOcEbA/hWu17s Gzzy6Gr80JQItGoO5VBkaAQIzrC6lFG/42cc1uIYDqzkgpguEvlmQTjvQYnYbmCB3tgOeIGa 4q0JFRu7heYa6yv3OWMfpTfDu7kKBo6j56K7ttmoO6NpZiCm+gRI6Ox/mqZa/Qm9BYmrqeRD d27YNi7Wo5LIGNt34L7c1QQ8W5OIyFh1r0Xv2SAOEEO6UxDsmF3p/OVRq8vsHE06R5/v3tbN vhyG3nZMsB3Cz3bp6hH8TDTPpgyOYzWWbD50Nc1O0sK4MVyrgV6yGt65kktTWjIC8ypuXbXy 7ebKVM2TJvMUEPRQfGhvbHDWkUTYLFZ59PMQCS1C3xIAQGJq2S/sRlxiEUcelkxmOVAXHTZK TEY2nMDZB9YX6yENlg8/rNnNYZtBCISckWwwV0d3014PDHAktCGR9Rv5HEBBPNfS1Bzbb+Rj 1oZ+qL7j3VDrbndjETvvN5gqUqe+g282FK7Ii13M/nhjYsti5KNdJq9TSOqgwcX7jcFZPNvn Sey9VU+u5uzPQEMTUiFZn5QQsapbSsbAKMb8dW88sGUNZcdvCqT5q1OwJApSKxRZv0pDSzvO O8e3SrtshS1Yis4FsRd20BkkMA9Pcz7I0o+XVY4Y3YipPEmKZ573LlOycawPA9W/tYwlSYg7 AleZIkz3llnex6mli9muXD7nVhEPb2eGJBaZgznlNpjEtme3yP2hUmOPSdBbsrc/Xh5K5c2T hF2TxMHHLYcSO5RaqtzfsH3mhnObh6FvzljKsyeeAhjsuIjvaIDaCYAE6OcAEsRUP5RunEBs GPGaPrO8T1G5yBvrDQmbJI5irACrOx0s6fl04a0S1CcwFcD3shIb118PXWcJg65zXofyeLgc 0UJzhv424CDX3adrIx9wSTirlBNZlDEGJl7w1ooDLwjdCA1vqzAtpwoo5vn4hBBHA55lUOwe PWhs7i+UUHd5qqOoA2WNSejQOJa6qPyV9vimFo84fJZ2AvqLIINj3UJiSIALqJsRxGvIbecE uXGyB5S2o9VRCdnLbaQ4Bpp0N1D1A2FclSmBATb6yfUyBqLdDFw292WQm4iNxWZ9r+ZIaKUT GjkwNpC4EZleJFKiVkBwutZfalImwCV/BMiQVS05Z0V3AxTbmvL22dpGsh6QALY3rHGBsbAd iuE6ZRfakbIuc0hpC0iy7Fhf//ouO9mcuyZr+FWp3jsCZVuuujtN9GpjAOs2yvakdo4hA6e0 FpAUgw1aHPvbcO4uUW44OQCHWmWpKT4+vzyZMYOvVVF2kwiwrLZOx11K1fKQLq4H84TATJxn ev386ek5qD9/+/nn3fN3OD74oed6DWpp+G009XJTokNnl6yz5SNDAWfFVXdZKQBxtNBULay2 WXuSvQjxNN/15Wk6l3UvV5QjTdl47EdtHI7weOBTzRLOa+WqV6C3tiuUNsLaQumZb68vz1++ PL2YLaV3BvQB1vxGCjz94vO/P78+frmjVzNl6Mymke98gNKWVCUwHZ61btZTOHdyIxkqPrQZ v/WE1lX0Ro6WENaYyQ54tMY2igQcCVkMRRn7pS4xK6a5mkhF5FlumvaLdgNBNE8Ui6ESn295 tcsl5vHSCIgo4kONKSuetjBsdGSoczobX53sjGJDikZ0e6UPaZFek9V1p8+S9UOiWKexzDeZ UgzV1VILxraOecGlz6a8KzKdBm8Ir0WH0ns1eIsAVuNhmHq21ty4rv1FT3rFmqK3YldWWHVZ WhiWaQ1X4kONv8YUvNJaOp28Qs9LhqEyZmYyR4NGkJwLNXpTCbNxQBpsSWQ2LzkRezpsjZ8O RUWMZgHgfDU6aSaLmXc0+hvgoqwp+h0HpmauuAUWA0nHF/vsY9G7Zn0X9F2PXyNraeTYxlTl uRLZA+CMLc9Ih5NRPVb8a1+aJRN064m2YOK7x2vZXozm5J+z+YnQibHiMWKuXuSCmPyFeQya hc5mVB7exDLsqMsJrlsgaetKhvwSUJAev338/OXL48tfiBmh0KgozXhcFPFM9eenz89MWfn4 DH7k/8/d95fnj08/fjy//GApfbr7+vlPTaLPrXLNLgWq+854kcWBb6gVjJwmgYP0aJG5aWrZ UM0sZRYFbmifdJzBQxJvSO8Hlp3xLFCJ76OB7Bc49GV3cxu19r0MqU199T0nq3LPx0xEBdOF VdlXHbAJgO2CYouv0o3BxzyCzDpa78Wk6UdEgnXth+lAjxND0VH1a6OBD4ehICujOT5IlrEd aYJmony5KalyarpSCY8jzOoIALdv2ziCBNs8b3gkO+5SyPN+yoCSwBjYM1nfgQnwQBMXP8lc 8RC/n17xaA+/Jw4e7XAe/nUSsfrIJ09rJ8WKXwuZPBpzF87hY9kQRKVjrUWvfegGZlJADjEx cO1jx8GPumaOm5egUbgXOFU8kEvUCKOatb/2oy+cdEpDEwb/ozI30CEfu7F9rOWjFy6yT96Q oHPh6Rs+F3gmqucjCUANg6W5Etsm0a64AQ4fDUst4anR6EAOXWO9n8n43Er9JD0gZbxPEtR8 bO7IM0k8B2nZtRWllv38lQm1/zzBi/q7j398/o705KUvosDx0ds4mSPxzSzN5Ldl9nfB8vGZ 8TCpClf5SwkM4RmH3pnIye+nIFwBFMPd689vbPdpVAyUEfAQZ/T04iJA+1QoFJ9/fHxiusS3 p+efP+7+ePryXUpa74HYN+ddE3pxiow53Axk0VnZRravCsdT9tf2oohqPn59enlkqX1ji9V8 9mIuJD2tWjjXqfWCnqswNOQDvDBVXb9LdPvyC3CYYInFxkID1NQQQYzqq05lNzp6xSrg7upF gZEYUMMUoyYob2LoOYwaYzpbdw2jYE+r4gx75WWwsSh1V/A9a1LDCJNenL6fherbaqHHHuoA boVjD9GfGF2rsQHHSNFjS/Ml+8t+d033c0sjbA3trq6fhLgpy7zEkSjy7GtoQ9PGcQzBzck+ oq8C4KJ3XyveK5cMK5ni2VDXxbO5OvvZXB1zywFk10W2t2RwfKfPfXsLt13XOi7nMSVb09XE THR4FwYtflk45xreR5l9YeGwIUcZNSjzk6FHMXp4yI5I3Zoq6+378ZIm5b0hokiYx36jrGm4 WOUSt2Y07MRvWcrDBH0WtizosR8j87K4pbEaU8NkSJx4uqrmzWt5lULxUh2/PP74w7ogFGCb 4JvlAAPUaE+0gSlOEKFlUHNco9PtLZ8n4kaRst4ZX0g7fMCyT4/fXxX9MB8LL0kcML6ciuFq Hk4rn2k3GZeWHw6Jfvz54/X56+f/eYJTXq4TGEcInH8iVdOrTxxlFHb0iYc/+VDZEmUJNEA5 UqeZgexMU0PTJIktYJmFcWT7koOWLxtSKTJLwajnjJbCAhZZaskx34p5sptiDXNVowEZfU9d B7cYl5jG3HNkP6UqFipeeFUscNSomUrBxpp9isaoMNli815NoHkQkMSxtQvosqqHVnNsoD5a ZbZjzjrT2oIcxe7uDSb/jXK8lUgZWFv6mDNl0jZwkmQgEfvU0oT0kqXW0Uoqzw0to7yiqeuP tkoNTLLv3eOsves77oC56lSGaeMWLmtD9SDM4DiwWuIxVTFxJcuxH093xfVwd3x5/vbKPgFZ tr28/vHKdvaPL5/u/vbj8ZXtLz6/Pv397l8S61weOPIl9OAkqaKWz2TwMY1UU6BXJ3Ukr88r UTVcncmR6zp/Wu/mBAOmAfEbQjadVJN4Tk2Sgviaw2esAT4+/vPL093/vmPLA9tavr58fvxi bYpiGO/1jBZxnHsF9vSSl7+a56xcvjZJgtjDiP6yIjHSb+RXuigfvUA50FqJsjEfz4H6rpbp Q8260Y8wYqr1X3h2tYPmpVu9BJM5yzjRZOb6UYrtJqUhgX1kxKRW+yJxLAejS1852sMo7XNP Xh6BeC2JO6ZaMy7ionAVAbZBokf0r3j6xlBl4kqfSQou0rIVWqAx1vdayWAYyus0z5uwhVDj Y/PGqFVzSKLMjYz6sHLHrjxe6d3ffmUmkT7RXgusVOy8a66TF+vlEkQPGafqjm2evbYZWrMN eeJitQu0BmtHGpmtQ/0QmVW+qmLzMlQHaNwGux6RcePireA+ihzM6lSCNWsKRk2RuTfXzDZj s2OqLe1ALfO9MQoz049wG2DRT0xL95xhnyFwSzvHQGsvQXetG2r0+UyGc0B72UE82xrjoXDZ cg7WJF2hDz2+8ZAHfz4vJ+qwVzIDcYLvELeeUX3XS3S7ZBPiNDYWu4wSVqj2+eX1j7uM7Wk/ f3z89vv988vT47c7us3T33O+Chb0ap2xbOB7jqPNhm4IdefwCxk3/wT0kLNdpinc61NBfR+N wCrB2jI6U6NMJ7Mu1cUfSAXH0GOySxJ63sSqbm3cmeUaYJafa9LuKgcrUvy6IEzN3mbTNnGs qhUXxZ5DlNxUNeF//X8VgebwbAlTRQJ/dSi/WEBJCd49f/vy16x6/t7XtT7U+9rWXmKNZNVk qwe6fHIoXecWKfPFxmw5YLj71/OLUJD0bJmY99PxwzvbOGoPZzXW6ErF7ypnuEfjKa6g1nzw rinQBysnmt0tyPa5DQcF2C2UGOgkOdXGpGBEUyXO6IFpxVYJymRMFIV/GqUbvdAJr7bBCFsx z1gQYQnxjSXk3A0X4mf2ipK8ox7+gJp/X9ZlWxoyLn/++vX5G3fa/fKvx49Pd38r29DxPPfv smGiYRWyyHAn1dXcXjmSsu2nhOPt5+cvP+5e4TLzP09fnr/ffXv6b7vwLy5N82E6ajVUTqtM MxaeyOnl8fsfnz/+kCxo15SzE3riecqmbJCCPc8EblF56i/cmnI73ft/nF3Lk9s2k79/f8Wc 9rZbFKlntnKASEqCxZcJUKJ8YU2cSeLasZ2yncq3//12AyQFgA1qsofEo/41HgQajcarG0Bx 5TI+pXVJ3/vGC3W8ai7TF+z3b6zz6QwEtPs25P1YzyD/654cfSinGUwgPC2kijfQobvK86jt Dt+eP788/fLXb79Bnybu9uYBujRPMKjk/buBpm7H30yS8Tev8yur0w6W3omVSjnLhvmauKON 5cB/B55ltb70bQNxWd0gTzYBeM6O6T7j0yR1eukq3qYZBrDp9jdpf4K4Cbo4BMjiEKCLO0D/ 8WPRpUXC7ZCi6qvlqUcIqUIG+IdMCcXILJ1Nq77CunF6wJu6h7Su06TjpUU/pXGzt79pz+Jz xo8n+3vANEv7O9TCqZPkmfp+yYupqz9Llv54/vbr38/fyKDa2EW8BuVFSj2gVU4ZO5gsq0R/ qcTkh7Hkyyq+7dM6pKd/gFkdO3nBX97gy5hA8Az6g964UlUR0guCWiAXngdlyNp9kx64Peic gNbYo0da+QN0JGP7YdNe6tDKF53UowayhUgsEsePGX47+stz6lBcOMinrxo1v3gxvvGc+qLs p9tgtaEPH1FCGXSRt8trlqRl4e1AeVt43Dpo1AcJ2qRAhF18QXcR5V45v/hbrkhLUDac9u8D +PlW0/MKYFFy8DbOpSyTsqSPFhGW27XHdsLhX/Mk9cs+q8/+Ee3NNIa5ixcecb3m25Vp9ymS 7I5pV2u9Zwl9CprLW4OW0ctSzNJ66Yp9dgItuAdl1/XOIY02yHnpasUcHxTEcUpa6Ep0XC0D FH3vGJ+tYbQlz/cPnqRMioibgz0wmySzfmPUzGMrlyvns45llhy4ONnzBXNcoCjBVB466Drl KYy+osxTJxGupELSZSZONXXJEnFKU+m2hDr+83y9wO2CjZsi35BHIajMclaFDrui9Y1NvAtx GYsmhx/i52iCJEKomA22+hwgmjo+YyJqNKAH6oTLZqu4J/sLKG8PdEpyPgl92HMsR44JtDIh utYioT0X2nUWlJMiiwWGfXeIzx0YGl0Vn+8hUuzSsjStYAkkgQs/F0aMSMeHgch32D9Vz19e XtX9ylRf1qMChIzZ4oyXQHZlxaI1fU10wisP1dLjQWzKWyWLUASeAOUjO/wuwP5ENyOXBy16 Z8WemWvYO+f45pEQEL0uoOWqxwRIT+6F1R1wFrer9Yqdc1JUNGN2rE5gMlWiy/ZBtHrvuZbr Zn9iddVlIog2l01yDajNAieJrPD+fxBupUzjhbfiPdsyymXK/GwFvgLOtsFye8p6w6tfaj2U OOP8Ma86fL5DX/Cgll46KNbzx/95/fT7Hz+e/uMJ5p/hDejktSdg+skiPmrksbHCQSRbHoIg XIbSPPxWQC7CbXQ8BNa2jULkJVoF76ndCYShG3dh2Nq5ITGyT7GQLJMyXFLb6whejsdwGYVs aWc1PHNx82K5iNa7wzGgr7n13wQT5fkQUDs7yHBqt5F5To20El9MhyvD7h4XRG67joXdObT3 aLQPiCLvbMe0SGvbp+4d1B7qZtNX15yqn+scyahXpa/TTAAdOMQKVXUHBYMRR7aE+wLfKClB vymBp3kSdSY1+22Ue1gjB+0DazYH5csoIOutoB2JVNvVylOo9iA0W+bUT6dRZ8fnuSEHlW03 GkVeVmGwyahdpzvTPlkvgg1ZZB23cVFQUO8HzlNsmpB66YH2Gfe/8MqZs1XQQ73x0O8mfvn+ 9fXl6ddP3/98fR624YiX60f1QFaUpuwCEf7Sgb1EjE+msfqPcDApP6Q/r5cPuLDOXEhYz/Qh 3Lr9bYg/di8iT4h66Y3HeTL8mzV5IX7eBjRel1fxc7ga55+a5WANHjAqyiRnAoSqwjwH+qHm Oatv87x1KSfRRuk8+70jyc5peXGPD4ct3Pk+HVVseTR2oPBXl/GiaWFpVVhDwYAmOyQUU5w1 MgzpezyTnd2hfFE2hRnyGH92+IzdfuRt0zE0HcwE3FDBwsqlSDrHuyOSqjifELo0S6ZEnsY7 85Y/0pOcpcURlsTTfGp2zXnCbSKodagm1Lg8HDJYZdnoO2vEDBRYyFQq3N7FxuDDMTSt2TtI znmL5rIgH6j2n1IK4SbryTCxN/A9c4mHRrSSn2pFJsVBNZTlscDLNvgegcUvOpvw1aIu4+4w +YQLuscWqYLJhZrNxAt5drPwvS9WKXOGHpQmAtCJo3aXZH9J+r7ByHRklGnspqpZBouuYebm OgIs3m264QW9WdL4ntjpN9dmNdOgFvNUABYcZgRJVSdZsctEnqRYUy8H9EfWnGVds1ivzAcc 9++b1BY6N2dF2PpyVF+vgvDiVl1KNM0dHGeAwC6ECzKou2os7taIJYvtlj7+1K2EV4Lm4KXP A5fG+Wq58gSKR1zwU0WvJxUsOW/93athdQiQ+5ma7dazGB7gcB6OZuArvURU2AcZRZ7tW8T3 cut5/a00JQsWnkWEgnPuC8qgdGN7A2Pen1osw62/VwBetzNVwxg8/jbRIXomj+VtHtke/LVP WJ2xmU4BBT0HZ+w2m1xnT7+5GLP3wzp7Pw4mA71VrmcnP5bGpzLyBGHEYV0k/OhvUg3PtLlm SN49zMHf80MWfg6YkRfB2S9aPT6TQSEW0cbfeRqfKUAsdpF/0CG89sOHfOtxfKgm+WRmrkHQ r4Vgab5wtoKn+IxQqSAq29bfLgODvwrnsj4uwpk6ZGXmF86sXS/Xy9RvuoAlKGRd0mcnvWHG PH6OEC7y0PM2UM9c7clvXdW8ktxznqLwPI383w3ozl+yQj2+KLUNsPZLM6zaNoHHE4LCy4LH F76fade5gyxllnG2DWe0dY8/mCXVKUop/Nrj0oahvxFu+YGKRXdK/lM94rbeZauxwrTAkuui MdW/nCSwdFDOp/SqOQyWW6c1Z0yJhgxdp/vAsTQxqJIytfamI50B6TfJ5pY+yDasdKisK05Q k4lp1pM71vKOhz6D3uQSVcIPRN452o4VDcQfYELchItd3u5w31FFoySroplriU+cFdeMWI+F RvTjDpOrTouS+9YJeuty0kcjWe9+JhOzdsSrxBd6xuabb+Gcn+tSLa1k6Rj68akaMoAfsVuT IbQmUcakNeLbsWh81YCMVABpLOd64kJm02VoH58b8vJkkqSCHwt16wnymS7/RrSKpxe6xNe4 95eDVzAP315evn98fn15iqtmfGTUX8m7s/Ze84gkP7lqQahlbQargtpX/4FFMGIMIZC/J4ac yrQBQWhpTAhPbp4BhVCqq0B+AEjcgVNH0gOTclEX553lkssEsbaNU1uk64Hg9Ea/f+Q08af/ ytunX75i7E+ypTG7VGwjMiaIySSOMls5jwksHBvpQX8xJd6sngxU84M57aJpVuysBoKRceLr cBH0wm1g7z4sN8tgGIU2dub1+VqWw1RgW00G1rE6ZwkD87RLZmYTjG1L9epRVZAXdBNotGz8 M/3AV7EapkG8K9mQEYMNVtU1ukgvCrnQcAU6BrQ8L9VcXRcsg5mCmCv7UIRCdrKssvSSZg4P ILBaJYnUbCjwwKrMoSsPPCRP2mbY3FiFb0jhBj90vusMy72z37Y0OemreDYXq97Cdd6/heuY 0beYbK64eEte8eFNXHnWzc/7dz7ymMi0gobYkRiI2CdWPmtEoxh4pzvgleEku8ECpjh2Bctn rOl70v1NxrW2ZoLH1oybZrV4a5oYT8TEVaXahP+fVG+xtuxUOQNbLtgF6MrxHyYt1IbY8h+0 iEoat2GwCdt/mkxZntE/TYWz1mL9T1MVpdpVfpwsl+duL+OLSCYWEMO5yJxu2efXr79/+vj0 5+vzD/j9+bs70/be1nnjGQs93uJ19INrWt6xOkkmxt4dlmWSeDfa71xJjhfAYbhNtvFtJqXu DyxOZ5jcOcUCJ1PKHdWHVr0lQHPgrDSXA+L+4sHepyAssWskzwSJKsk4Zk1KN/KxNSru3+G4 e9CXJVN5znZKz4ln0JKwTDWT3AV90Ozh/cRjGXSq1Qp3RWDvrbQsnF00YGXwRsa0iirgdBeb jpJtyJi9SZxV77eBHRBnYBCyrKlbOeMMopN2Yk/YJIOPXT9CrX8sHARppvSRbVgi+DMatPFb ctP6nszuDJb6Vl+V1NflZpUYsEe7XXesGy25M4X3Xp6dpupdP083NwbH0sTSqIcmBrZRCka/ Oau70tvgMZMVIHFkylkt3z9I7Fm5GRnT+zaiSm+CJxM9gJgs92mdl7XvSBF59mnmqhgl7eU1 Y+5xvALU05mcZ67RjHUpyuuUWiZ1yYmcWF1gpFB/u8g8vAfTnFlC1i9fXr4/f0fUeGA15nZa woqOWC+jZ2dTT70h80nevCaHEtK7+ROlka2Z2aNXTOVhXKfMDYrKnaEGapfHiaQV1nQHVMj8 08dvX19eXz7++Pb1C972UMFPnlDbPputQ7S0ijZE7nRoiB5nOhWKf91a/fH2qmhb5/X1709f 0EHmpCcn2wlNseTd3IQHHFveTRzjOxCh2GzGVWBzOp+vqjFtFUWmFIIqmSVqaxlfN+R91PFh pp1pAUI7YASbqcU4GQHy5d8g//zL9x/f/kKnqb6BBrZ7itcrSDWFjtvvoH6QOsk3Ydws+adp GQm78CKGNrBv3rlwHjMxt5gb+C4xpXNVRGzchfVAebwXxETdY9qe87Sl3t56+vvTjz/87Tr5 LJWzeznd8Qj+hh5zK2zEj/IgsA4oZ9AsMe9jTuCqFeEMDAqNeUYYsLU840X7YJe7Z1Ka1rdU MPg8c2wrD9WR2ePww4T7Q+taYECRszYXD3HcJ3205b5nUecQDzfHWTHLdKPMnp+40a0H4Jp3 p2ZPaFkAWEJJrXV9iTjOYc1iM3PEfGdaL1ynwX5GOsq2yYY+xqlDJ0AWi60f6U6EBTKCVrik ET0vFwFhtiGdLOq8XLr3Cnv6arUkW/G8XC/8B80Dy3Lm0FaxrCJPkHSDZbWa2x5nWbxam562 RjMwCbc0gBd7CSWgYgwTZBGtsojoOg0QBWiAaH8NkGsLDVHPfe8cyzBbkvUAYEWorR6gZUSD IV0XhOb7RfFs5iUAecj42CbDhjzUUMjj4dezzQ8+ZGpbQrx7wNs+0SIiFkgILOnWjpY7+mMw Zsfc4rPfu5tm2p+ZeLUZ4uFqP2/49XybgLrUqY0H3AP00HcEnbQk+ieEZAmp2CyoEQH0cDm5 o6kR3GGc+SR9cEZliXS6U3tMUMf/R5mvA6JfeVGUuJa33PTdF5V9DGwriM+A6m2HLVHJYUPC i6w8SLTaEJOkglaUyleI6VjWAnahD4k2EdUrGpvdSNElkqM6F7DsX6y7Kz7Tml1nOMx9vMVp XcH4Xqy3pAAhtNnuPH7/La4dMfJ6gJajASQFCUErLqoD9FmSFUZ4XpsBV2R59XUAb4UV6Ksw DLUtIVcD4s9Uob5cV4vw317Am6cCBX0giHtqs6fldQZzPikPtQR1DmM/uc4ll6v1ghjnSI8I 5TBuFhL0LTFXazpWgq4iGIluDSmuxeLhd2wWZLWA3JfuQHNXDPSr+47B/1Wg28dbQHr98mhW 8u0Qijy0nM2ZwDogbZYeejB4Bi5S9ABcrtYbMnfJonDmjmHPQjoevzPwTjBiISOZCFcrQlgU sPYAmw2hAwBYBVtCfhHY2J5wLIh0imhwgCVPTC4q4BplIMgD2203FHAPUjYL0j1kMpA6Z2SI LGerUzhsqc8x4Qc1UCweJXVnmheZni+J24XHuc3IKSIWhhvK8cWdRZuzRJ0RWRHfq4LBUVYZ TLm7iF6nKIiMDD5yYBwPQjav+SJcBV16IdQo7okHZBqgEwNg3EOf0LcrHz0kDRqFeB8X9Qxb UitiRLzF/D4CssxOVyqqHtkgQCdsM6RTiw+ku++fRjox1FS4Pw//htAfSKfmM6BvKbNT0+kx 1GPkAMZzoYCu785Tzo4yhhSdru9u48lns/X08o4McWYyUGdkik425S6gLdarYJ6QYwPHhyza ksbfB7VluFtbvjBNi3yzIrRxLtfRiqyKQuYEFxjWVEXw8spqSY6XYvoOjOKgvqC/EkPotoqt waxjttNIa0fSSqINGd9NBAO2AW3OHGtWncgrlC3p1ty4wa7v4vNketR0Mg8S4Ue3Vzu+N7AX 6rQ4SuvqFeA1o63DBnOf1gFzvDuV0Adif758RA+ymGDimBP52VKm5nUwRYvjRpZN7FYHgLqh RFZhtnOJkcRrhyjMa/6K0uBDA7esfZqdOf2mTsOyrLrDwc/Aj/u0mONAF5w17dRNwxx+UYfP Ci1rwdxvi8vmyGr3S3IWsyzzZVTVZcLP6c1plFhFqHBo0E6So+OGfbAyA7Ep8OY8gEAiSNCx LGourAP2O9VpHiNlmgsA7dzSzHZFqWlpXFKnCBosnRw+wJfapGOa73ntjIvjwb6BqmhZWfOS vK+P8KnMZGq9sNYU/yce5XobOT0I1Rsk36TeUrc2TZyVPid8iF9ZBgLqhS88varXSL663erB LYNB5TFLJjWhPcQh8o7ta+ayyysvTqTbUP39heCgicpJR2exegrtSWf5jtGEoryUk0ygzVDf eHJRfg1z6GNHkeTQmPW0Sjm7HTIm6OuFyFCnWtR9xfG4LtH5h1NaiRfylJzaxTWZ5Eo6PPkV kts5FbLmRzebsgap9Fa5YoUEvQSy7tPwVVpAExXSzbdKJctuhU8/V6DNstjppZ5o+ek16YQb WBP25gfi4GiiCnQH9iGPxaTi6KfEV+0aXQomjjzUZRwzp06gjfX4t2jDVSurQOFX66JKU3Rr 7GYkUzZRSEBMM/RJ4LkArXiaosq8Oqu2XempgV+nacGE592yyhLvY70rbzP5wiThKF7QRSJ1 x6g8wVDPXVrdCOn6njCpk2mhQTulq0TkkMPDh7R26nFl1sVGReI8L+VErbUcxNzbCJjzTAN8 uCVgq7jqU4ByQz95zX7SlRqJ4SPLvP/lLZtlla/cPAajPLScwlEWmDLN8IkkaSUC0FuK9jAh bb6eWbtrGQt189bxC8KYLhAP+ocC+wxcXp3Blx8vr08cFK6dzVhNfQMcGDrHQL3nS2cxvkU1 izS+sDzF3HZ7fe9ZxCd+w5E4eri8280CHQirR77UaQTCTVZx+yWqzqooBj9dBpnVMXwqE93J VISA2GzaD4iZrihAg8dpV6TX3pPcuHCwAxFjR/ZP+syGxkx6dySDtyp6oYB8j33hqCaWR3zn CB3oZGa3nVCNdwQ1AIRpmzNYOICBD3MUPm/M2O3n0IR1f9zF/+v3H+gzaggdQHjmVK2/3rRB gI3sqVeL4uH2gaYm+6N10j8Ck04ZqPhANrU2b+/o5Hr1vXRotT1Bz+WZol7SfUPQ+0udBjlF 8r6O80n2JDElW0JRa/SyD7qvk5JApURhFLAmotJOGktRDyIjqHkbu2NuqFVXVHG+IR0BW2xo 6E8G7oiCdDHKDrWZJPdmwOSO8ho68ogTmTRtb0VJaf77p1/chHEh0Fm6gh9VmXp6p0Zm24SL 4FTNDAAuqsVi3fY9b6VGKFqHbmKL5wCDH59x+gsAAy1ahoupaJV3gbMr/ZbeKmd6645Fcejz r2sxZhXu1PuEqzR7n/4GdVMx8mD9pUsPOhkg5ShILlGLkU9QSr+glI8EpekZvE3VLKKJIJiz aLZdLKjOHAGQptKTuN5iVJvdZioimE6mQiqfGG7WvbLFv0/W2BonCe0A9yl+ff7+fbqHpSad eNIUyt8auVpF9Jo4Klzm445ZAbboT0/qq2VZo/f+X1/+xBgzT/jOPhb86Ze/fjztszNO3J1I nj4//+/wGv/59fvXp19enr68vPz68ut/Q7EvVk6nl9c/1RXXz1+/vTx9+vLbV/tDej7HttHE 0V84AeH+mbP5YaVkkh3Y3isWA98B1h70Zo7JxUUS2kfHJgp/M5/5MPCIJKnt+GAuuqL9Y5ts 75q8EqfSb/cMjCxjTUK5aDOZyiJ19n1M9Iwv0Wmo33YDrcLive+TQMa7Zr+mg1WrgclG+w9F nn9+/v3Tl9+tcD6mMk7iLRm2RIG4qTEVBl5NogmZ2uf/KLuS5sZxJf1XHH3qd+gYLuKiQx8o kJIw4maCkum6MDxV6mpH17gqXO54r//9IAEuWBKy51BlO78kdiQSQCIzr5kh+ARpPGT5QXfM v2LHxqkoSgZQph46U/uSmC3wJd0I2KJWrD+H5jdAu1UOgeN1EFB+zkquGJX4e/OVzeGnUTAI EZd3ltIjgRtlg/8cZRN6O1Y2MRTa6eXh3eHb39e78umf66suR8T3Pf8v1m5n16RZyxDyeYjs iS0QcRhtHFvJ3YqQ0FXGJdqXqzpOxWd8w8RnVomfsS85glsORxvlD8QYlkARmzSznAK40dwC x5tbQB9tbrlHuWP27ndJCtSIW6VYNAATsLQIWanM7C1BhjuDvqkLBFrfuyJgs5/uvhCM9Qhx eotq1hM39xYz+UhbmheuTgWNNImNcTkRbe1BAv54zq0ZtnzDe/32LJ45Zf9bvAjnMhxUuSye qKAqyJmxJDCqJN2VWmuCdGJKpF9l17IkmdbLPBvD+nCCMsr3kTsX2J1CXzV7UzB554ZC5KgZ QiuIODQ4FlmPomDNKSPgFNNpAdoaLd9+4AY0Kte01la4R0GFs6jawiWwJ5Z9n3MFXfe8rsAX ahwB2iy0ze4dX6P+tdTy8WFoH54Y4NhTFN+nfqAH4NXByGGKpA4sEVnpveo9oNnT8xmlgzxq s3psc1NV0nAcKxle1xPEWhoZwVuqIv14DtT3GioINweOVqoaluB2cAZTukEn9VgNZ2f/1dml yqzjiwlsyyBEQ1EoPE1P41R9o6Ng9yRTHVWpCJdYcOTpyJi1pE0HzLhFZcr2uNQAYGyzPC/s zeEsj4quyx5ox2c66g1c5X2sdo1LMva4V0FNDuyKDnyVv8c4cEHo3s9M4uvBMSab1vSLr4JV TfmW4Z1+5CmQBk99gEsGrl3iIpWy485a2ufGY2fNfk4dAj0+Fc5tnqR7Lwnxz+ad5bLO6WfQ 6IJXVDQ2MuOkwFhXsvzc28P1woqD2a5lcWh6xwWzwE29YF4MyGNCYnPv8gh3qMYen+bGzTIQ xSow2TWo5QbLFYjPAyfYSkkFfaz2dNxnrCfHrDs4l3DK+I/LIbNG0AyADuAcwaX7FKfvspoU F7rrst65RtHmIes62nRm9nAS4zyJZFw5Ekc1ezr05846raEMLoP3mDU6wI/8E6O3i0+imQdr vYKTaP4ziPwBc+4mWBgl8EsYeUYHz8gm9jbWSKL1CbxGQ7Qtd1153zVMGqMsw77985+fz5+f vsktFT7u26NivzKr4DZSN60gDqSg2qFwVoVhNAAz4I7CwU3TeLFuocRRrmdoYeIdvJ65UEjL ltoUYXeiL1zTazGZgHaB6GgOraDofmrSsq1ds5MJAu4WrjVDZzSaZAKhrcCs6UG/bprQ+RgG AvjJsCaM862luaGTr2Pj+vr848/rK2+O9cJKHxrT+bMhYKaj9XNuqPGHzqbNZ6gGdT0itQ5A wJlQ4jwxuWC7JqCGbunC6ha+EofM7lMRKCYWaRHAXU6mfPXtM8MuuoHZiJMgBHCVR1EYn3Pc wgpY+PIbBIl7Fyrw1H1vcGhOZydYHALPJTqmUSVf5VutKy5KRH87Ps+Ejcl4McwQAJJhgKwT fHVOosNQG4V0B86QG0Z7c62bDso1EoPoe4agWHeuGlUYxlrfI6z7sdmZ68CetwyEbMROuPfW tN6P54z4GA0UhYw8mpBmWSvku/jVTHemOvbmC5wRl9a4sExVxL+vCe77W2MqPsg0svOOFe7J uPB2de6IKKwn6XBMrjGpvfVeU+z5EBqZq6nt3lUgu5sNcO1vvJyC68ZR1MoH4ZE+wmeZrjiy vbhFk8KGXEQta8rh6cvX69vdj9fr5+//++P7z+uXu8/fX/54/vr369Ns8qGkOllT6XLS6aVJ SLEet40UUuzmIJUyDg1rJCbcuSawO9pb95grcjN3hc0atTgbehZmyBSjgnKSuxcxPiCmit5o JaQDjWsL6X1eCFzXigECZaysxjpIm1LnV4YVmCTmuwNuVyzhh2JHMpf0AkM9RWdTFpb3x+Kc Tv/Y6v4JBGHsSYvlKsEzYfoSTyCGLHFohwCCw1oUlQke85CxMECPcKbytIzrKOmgKvj9Pz+u v5G76u9vb88/vl3/c339r/yq/HXH/v389vlP20JOJlmdueJOQ9DDvEg9dVphaQHXVsRs3/9v 1maZs29v19eXp7frXfX9y9Xem8gi5O2Ylb15zy6x+sLHezbjTg3jdn7aYIK4gOyB9ua1KQBs agowa1LLUlW42KyKivVUP9KZ91LFg2FQLOzQRCQCjDYKo3A1U4HtOti71nBmcHyA/V99KGyX sxD70mpc8b0SklQlZ1nvB6pzB0mtQy+ItplJFq479XJlHUVd40mQhfEmspJ5CDzVh4esHwQs UJ1krNTIpBrubySt8zx/4/sbg16UfhR4ofFcXEAiSC02BVc0MFKTcW1tYrxBOONtYDY3UD3f pMITtsBMlW8ANulgsk4X0npFeHNsoxDb0AjYjNAqS9KG2w32mnRBI6tKbRQNgxV6fcECH8mF k9HQxTMaB8hHaYQGxp7RJDVHRGkF7J0mVHFp+DKLhldYmy4yW3miGjazCxSHg5WVjCYMb+t7 1K5bMJnBjSci8YMN89LIzEqNkCwoXXE4l3BsZk6TnG8V7Yacfe3zHZ17mPdhtDXHXkX8MElD K8GeZHHkJagIlAwliba+I8DQMoMiPMyLwJv+RmGrot4H/q4iVslOfR7EW1yTlm3BQn9fhv4W O25QOeQZiCFNpf/Ab88vf/3q/0ssNN1hdzdFGv77BaKkI5byd7+u7xT+ZcjjHRz0VVY92CMj jnNVOSaq1ENfu8r2KQfSquFYZ2qnH1kLMrjDdyVUU5KkO3NaMDAuf1Q35rLTKe/Vs0MugBhM EGKQmJIaVB7fi+ypxQ5VaLgdWLqnf33++tVe7SYrb2aP4Mn82wrAijE1fLk9Nr1ZzgmterOh Z+RYZF2/0+6UNRx5l6ThmotsDcn4fuJC+0dnvUBivVet2fR+tWZ//vH29D/frj/v3mRzrqO6 vr798QzK1KRP3/0Krf729MrVbXNIL23bZTWjRe2sXsbb3lQKZrDNampP7xnli2JeXG7InyUV eJmMXRHrzTmdCa3n24RwDYvuaMkbGc2G8v9rustQJ9kFl+UiagglEJH7rBxNCch66NH14NR5 pxO49N3EqZ/aiKE0AulI+oY94sTpccbvv7y+ffZ+URkYnPwfif7VRHR/Nd+0LY0BxPpSFXb0 J47cPb/wcfPHkzQBVL7gy9IeMtO33wsCEYnRpl84jCGglrC7iGuTeWDDQyAoiqUTz8y2Wjwj 2W4XfSpUu8IVKZpPW4w+pFhK61MHrSriExYmAaa4zQw580MvsdOU9JHwWXbuHrGkgSPBFDyF IU4CO+njY5VGMVJvU/Oa6VU2xFv1TlcB0i1WegFs8aSSJE5jrELdKfWwlW/BWURCrEKUlX7g IblJIAiw3CYMc5YwswycIbJTbcl+cuGCAR7WsgIJnYgTSBGg2vh9inWGoI8PeY+M0PswOCF5 ZGWVMZsuDic0v3EKknqe6iZm6R0S9bGPzBrGd1RbL7OBfaV7tVxS4rPM99ARMvAmwd3cqB8H mBnJzFBUfOuLDNnuwunIGOouaeoh3cCiCiHmfNKms3ACB2A3hRN02dbRxaofF00oIBNA0JGR CvQNkr6gO4TOFp/n8VY1ylsaZ5voYc3XbtgYPWUxxJrbJG2Sb5xCCJ3KfKoEfoA7gF0+J22y dY0LxJU09N3Ty5f3F5ichYa5m46Mx4cKfeKvl941IrcE6W+JyJR/N+8xb5aWVA0y33m/B7hM 5kjkcCylskTYEYC6DqXRuM8qWrpWsjjFn1RoLHjkXIUlCd5PJtmgLpRUjjTF51KyQedesPGw uWocBWh0LH1Oj0OseVh/8pM+u7U0Vpu0T5H5CfQQyQzo0RbLrGJVHGxuaSy7+02Kz8OujQh6 rjMzwLBF5rw8WkGkKQmSAaPDmz2sAJ8e6/uqtXTV7y+/8R3X7YmRsWobxEjhrId1C0AP4E5C PatZVjYGBrwVvO3Rn8EtrQwW8Lf6U1jIX/ifduJNpZ6NrqsswTKSIWBvdUm38bE2hmeIHW8S D12IAWVZdXtCTldiN3kuPdeYcCOIpWbnOsbuoBR8QLqnHzbbEB/itzYXU1DPFGkS8G5Tq2HQ lu7u+W8etpqR5rj1/DBE10jWV9g7jHVdwPoZTu6GYcDSkw66b7Zl2ZJgc3M8WFZCS3GqdMDo wsALrV59wW/7l6o0Zgh4k6EPEh8RoXCcvsV2HX0S48r+AGPxtt6YhDdFlwiOg3Qw3ktdn/v+ FptWwrrmd8ULG7u+/IRISLeE06Ep8z3VL41yPk6lawZL3nFod94rjhmmT9hjTYQtm5oOexB0 /KpzSsluFgnwLrwUY930dP9olA1QVpR72Kxjx+UTy7HQXg+pVHFcUUjxOV0AGhWbv8rOw2oM O9GO+WaTqNukE+MzNDX/HsVxjfefMEkNwHAPQfbZAZSkjXJis9LGLushBv2MQMDcjBFKDR9E vR+f1OulNuvEU4o2q9U4ueLPGfzdM8hdI/ow0snyxhBWDqZZMEl0B94VZuyX5dAHTISFI6Vy bPZasC0VwY+rFQ7LzZWat9Je8gs1mzN6mnmhvE3yjl6ME97LrhkOZ9xqFr5RL3Pk33CjoN1p TmQjLrAJ77KybBz1nlho3aIBl+d8K6wwFXiirsCDU6E4VlmTzlvcsdJFvCGDuliTXYTx+vn9 j7e74z8/rq+/Xe6+/n39+ab5v5mmz3usa36Hrnjc4bHn++xA1fCApIHXl9rQERTnq9QFlofU QlDQT8V42vEJtElvsPEtoMrpWVlWlJF53LhzpixTBpeOtaRM1LBLCln1+amSY5SsHmys5NQP kJYSAB7jROXANgALXoVYAcFNOm8R2nA9DuqNZC5ZuF4QxsDhzmNhjENHUnyMpw5lTuXANhdz b2fEw1ooz/j+r8LW55WBy2y8WOLjm5+mnt1b8JWDHm/UQ5iZ3gepZ48cIPs+VioANrcaS3Dg +1mVA7+tVTgCTN+b8YqrNeo91kTfl5Fv1zHj4ov/84MxxUYSSEXaNeOt1qbCW0/gnQiSAokH 2FVhS8I8w1sSBxss8/zeD3AfEhNHzZn6MQt81M2BztRYVRdApV8mGZAf45aZK1uZ7VpizjJ7 rnPN7h2GPPNvzCLOgJeUA/iCO7cumPvdh1blWRTEaHL0fWkrDMftpXwZn9vUx2/112bjScS4 wciaR66+49LI8BTKATF6UB1nTNilOqXeYCeXBpEtYTkxQuoF5PGWND3Jn9oNICK0MfGjarHr kpYjNeFtp+lEK7lrzj2tjbs+vsZsA/zRAQd5UXEo5Zs011d85Hj4c+iG9EVTgxVu0dUOE9f9 bmRVEtmWAezH9emvv3/AnfXP79+udz9/XK+f/1R2Om2Rnc5qBDVJgK1OfxwzUvf6UmHjLRot RGdrm1J1IWyg57ztOxe6q5kLygvSl6cbaDH07rJz/ANFz2UOjjROxeMH0ihvpgGOa99NgrUn Pba7hvZD2zlB8RhF3Rw6xoRSPqm6Sm8h1pDKXr68fn/+ourLM8nQfflmyvC7XvbFeMgrroFh S+28ezdfqBzYCKExYWu2Es815fte1qqO9qThzUjK0ziU9QC/PHzSS8BnSo+2dwUbB2EAXhd8 0K+JSmB2zKkS8YfDAhLBw400LjQvGiuRnFbYCiUwI+iUoOGvDXekkumDc6A1X04O0jAaL+RI jdDfE6RuvfjnNrmlG7ERF/19ePr51/VN82c0DQEDmb8eaDlmA+UdSPdKj+5pUebirZ9o1ol6 rMDgFvZTbHLduZqjdGSYMHiV0XdcoDiM+SEVsfV3Ccv7En0KM6Tx4pFN2XPOBSAtHR90P7/8 z3FXNbhn+qykRf2QdQWwIdlJk0RIgsHBwAM87s5Ui7KVoT/ywVR0u6ZUxn81VFN55o4qsnud MtCsqaxSZ6Tojjl2VgXIOL/8V6sOZCMR8YD6UKFhBCA0AFfh2r5RFhZBtBPPSb5Tb9bzoiz5 WrajDU7Ua6gCrKoMwCyCIHaqw87p+ybVNjCCaucDXZEXjHS01QxPF1ALU7xQNZfq+/N/056d 16KtgmlCevD4gsmVQ5uPbUNORT/uDf/9rfTMgk+HdrzhzAFQtaI98X2+AzZ6m+4qUGzQ9KWT ZTYe86zFj7HlQCbHHn4Lwz02+SSPCC1w0ezlJlfEde95XjBeTAtuCVdFXTbYY3YJX3a9Yo3J zt2eD+lQr/hEHUMueXrDbf6KCdf5Y9N2Bd984adeMzMXQXNamHhn1rwcGj8aC77I4e4wWlLU fFEtxOMDbMWYnKQjQ2tG7h3eN/uGHekugyC73f5ES7yjZ65jhrrNnmGtVYXUJHwvupLKgzUv 26zORBAFC5En20ksElJGadNyFaOz2ME8QWzNeMdzhrqnmkStygH1uTmNsZvDt3N4Zp4sy8GX O6fUXCO1FCbpK5trXdcvd+z67fr57a7nCtfL92/fv/6z2ga6HXHLh8YMQnSIOVSIEaYXR/PL /fG8zKx2Q/9AxhbMNvvq7JxRFfgxF3PBni3L0ymXo8KJgStwvDbq0JhqS84Osp0L8Laoo1UF t5w9a/mImELKWKyk3aqifc5aaUtb7UKo2kMolwbe9jrO/Tu+jVzyx0dXxZeJrG7WgYnvAUte UC4gEswi45hdClB1FT24PIFT05LLEnVvNzNy2VRwvVmZGavijCrTi92BHJvfvn/+S30OkPFS d9c/rq/XFz60vlx/Pn9Vb9MoYdo2DFJkbWoKozkQ1MdS15M7shyXmkolZotK/KhB4dpuUvOk YkZdlpcKy5HGkW66r4CMVPh1isbjeDGp8tAo3DjOeVSeyEf7k0P+xoVsnEjiociu8lM92p4C kpwUifdOowPTNojQ1AkL+NI/khZFwYCEZeatyoweiorWmHRQeJaLZrSdg6pl/jsNzfc38PNQ 1NoMHO+bjt6bA79kvhekGZ/uZY4GL1D3sHAZj1Z7CWGNoou1Klal9gF73qswNEOdMTTdC3HN i6pqA/sNOzJU8sRPB9fs2NOBr3NwJIulAi0tHpEzs02bBz4IIvSx1AInun3OQt+67mGgtBk9 gSMztP8BN/fKE3GMQ6OOCn08ZD1uYTFznZracR46NxSFlwFYBuTxUJ/xhWZmOXbogfiE1qzF 0q3ZrY9YpzdBx+fUDmKyqTqbJiK5YIrJJfRwgSLwrWOQcDCOHRcTKk/ikkgcTLYpuQTuGzhF luNP07sCPGwdKcMruGtYvxqc0pev15fnz3fsO0GcsNGaz3KubpGD8nBMUXNW1DZbcjAFkXJW boKqEDex1IENvuc5oTREoJ4rV2Q69VxUU6QZkMaz/eFCEGbxGnBKEtdCquuX56f++hdksDav KqQm58cuGdYHiYdb8Bpc7nuYlStOYkxXM3jUcMsWxCWh9p7JZqDV4T2OtniHg2Tv5XLJCyJZ XFUFpqIGpo9UmSvOB7I/3E6PLyYfSm6b3Ehnm8g2/Egy7zUm53i/IYDJbgicG0zw3isY53HJ QQnCtdAHKihYj3TvrmDqh87FnYMJZrdu8OjPpC1Q6gcfahrBLgfmR7K93XWSoz2L7Si+4BhM phUCwpbl2EN6V5J1fSvbZTq4OW5MUcGwjkw3ixyX7qpFpmWNa0OmCVo0tWw4OLVB8EI+HnJG 0MKaPsoFdxaFbYm1t0BFhi1hYJGfysc3+udCka/ysUMd2ywsHFb8n2Tt/XggZOT7vY1OrSqL TCfmjaerLTM99lCbJLrkob4gA2qJUiWv+lycV1lStbjOC1V7irRSwy1GNVMoV+p6WpFL7m3s sLcBhhJhUNKV7WdlJwthVm5iTjRLlpV9iz3rVOAYTc0kT8ypQW3PKH1ORCHf89En+18rJ9jY UdZygO960BjaRHwGqHLmSaasLXLFmE2Ut34L95o57wkuQqGsG7yv2NSZhjqtTB429ucOLnJ5 xdCpw8b7mDGI4Kw97ZlT5jkbRNmmm8gs6VwLo6z/V9mTNTeO8/hXUv20WzVH7DiJ8zAPtCTb 7OiKKNlOXlSZtKfbNZ2jcuzXs79+AR4SD9A9+9CHAYg3iYMgYFHokQyKzGsmRIDQ9U/O3THR YDqBi6gLrkyfaD9zw73KU2K9rCO28esapmaXUK4A8mjxM9EhMCuyjevCh5R3LKZtNpfiajoJ tNhmzi7PGDU9Bntpxz4fgVMKeEYBz6k6L2eXMYVbodmE/mwR7aBEJ2QPLy9p55gRTz+xGfBX cTVf4SOS/4CPKcAKOyMbfRVxShzwtCI7oifEdFxd0PNxdXw+rub0wF5dHf/sKqztip1erE7P IloQcts1LMlosQlr8MnTtE/qldc/jTqLoDDONPyqkmu8DfEIdHRd+BIPSt8k4WDbmsbCpned lAc7YJiAWCV/wWdQFzOLlOi0oQSNRiiTpne9qBLjHS9EEU1dS71bxOzseBGyI3zJN5k/owra L7vz2WlfN+SFiqibNFY7okRyNb84jbV+oDhj/teyAfg0LXKdWqJ5NaH95qwpatG1NXY+I0FX 8nrNI04j0qi6KtCkQd+ib0XNS1x5wfWeko/F88frAxXPD8Pr9JWVallB6qZaZM4qFE3Sc2BN 7hGcbVofKn+iCdi98VnkKfE9luo7uRqvoCD0j00hzZBHSPRzz2MU5t3nMZotyNSLIwTLti2a U9gdcRK+q2e7XTSQkXwieqHQ9iig+Tf2TZOy4YNxIc44ATzn/Vp4YBXLPahRveE80hOdVjXa LP2wsm/bxG+JfpYbVqrXQLqQKbpgcxeRrZTX4nIyISofnX7anInLIwTFTkTbLrPDT/1ml7Ct msyH4gXtSmZFgNUR7VLNRcuSdSRuLhzMm8tCehDwSIYR1hZ4Ec0pbxuFCy4usV7jTuHdpIxL Vj9qjo2EvGABdVOEPSva6/jkq9o/o4UCG+2cwGt9rCQF6Utq0EXbuc8+NeOrREvpxsN3bWE5 TWW6a362VzMtO+r2Yj0/w6VfNM6DiAFKvoTQWDfWpqqaFzuc2j5po+e5nKoW3+mS05vAEE5O iQ0zmLDjB46mqCI+ITJ1IyZPw2m6mHne4I5ZxWMbw5nFeL6obPUf+lsoyOgRZJwVizXlqaEe aPdneKA0W1iP/vfQxmvZSkREfI5ozwbMUgoHXPQ73fxY3g5l1EGTjePngUynThPTTmtLJEV6 44HlY3cQ5VYuFOUMv5+yOh7rCwcRojPxyALm3uwfn9/3L6/PD8Sj46yo2kxfxXlLY1N3sMPN LZ2ecqIwVcnL49tXovwauudMGALk41CKZUmksq5hRMWxTT4GAT52eBQ6NtZp1DDA6NeM/oTm GgYW8NOX7eF1r/P72q+oDW0YEGBESV8c5ygbUNjiYEJElZz8l/jn7X3/eFI9nSTfDi//jR7s D4e/Dg9W4nnlqv74/fmrunKyhtfyvcHgEQkrNyzmnCOGuyMmuoa+t9VZGuFAqhJeLml2pIiK CJHxoyfaqzrypjy6nom371Dg6MQwSAPSZQy9huCEzEmEKCvXP1di6ikzn4zNCmu3mejVRLaB U3EAB6xYNmbJLF6f7788PD/GpsWIp3UkjRQWZ0eS060ki1WpoHf178vX/f7t4f77/uTm+ZXf 0EN50/Ek6ZWf5TgyaLISebV1IPaSTWvGUDMLss4MbftZC1Tsyd+KXWxM5AAXu3lBFh98qe6d QS7+8SNWopaab4oVNcYaW2qPN3OFG5aonlZbNwLhqJoT3D3TYRM0zLn3QKg0v7m5hhEsktq7 u0BocLc3PuCmGiSbevNx/x0Wib/4bFaBJ3hvJxhTULHgAVfJc9LmJ3HufYIB1akH0zcTHnSb lEKMG9FlnA3ZZ7Jn7grS4h7FPYwssGqW7mk8yLu0eg54KatPT/tNlbcylXbV1Xl050rqs4Da r5TOpiB1GHXYmNNkd/h+ePJXuaZXqX36jXYd1QNFfOHWfec76JiHU/+K91jik3xHsmyyG9Iq hA7DphfZj/eH5yfNQy02ZpmbkByDzN957kE+yVKwqxl53aAJ3FjeGjj42Z/NrpwrNI3HfEhn kXTuI8nl5XxG3RRritAxzSDa8px+bqwJ1FZBAz2GLgha37Tzq8szFsBFcX7uvpPXCJOdjbQX FJUbSHTRTvocDvjICwjlOdOXWSQlgtEXI2geUWDLln5Guimyng454YRJhx9DaFkLZCLXWiCp 6hKgfp1jUhRV6rioAY2SOvej03p4NB8R3yFnp3UNxGdNzulnFRKtmH4Ub0wYkVapEF9uR7Wu 7gLXfLFpXRAvVn5ngB3TdwYaOb2MtAN1ubYOBpXfiIvpKb21ES/zFFCbSyETdKzUGXa972Sg quiHQoRfCBFxqx/RgVc9oqSU6xeHrBpv7yLFWW5ZNnQXNAvjufVpETUwAYnMSWAHJZTAHXMB eJfgQbQdpLXjjUuE5ovevgqvAyRYmtEjTQti8SlgQ0cwkEiSBypM4UbSHIAwOfHy0IIZxUq+ HMfyLGHxogG9bmL2MCQ4Er4O0XfO8lTSa3Nz8gAcNkziAxh3SjBdtp1RCgN+NQzpRpgymzE3 orqZdmB7CZLXZC7tgQrqpb7GO1uJJL5tBbDiU7cpto+kgzAFrueqSRY7uytr0a/sTsKXw5UG 9CvN7EdzcMIAXrSZY1UtZF6jonOsI/p2CosDHrsAzYfMBlBV5Qo12DrBhzBuXHobVwhviRnV wZ/OoVU1S679577y4TjsRgyAQq+aIbl5lbSM8g1SLrrwQ78VdmcOcaxdu7fGLnYnJk4McwlV HCqADtooBcZfiZukUPsPx16tKDTMF8VCNFLKa6ttWGqO795ujpSreUW0aHOIh0Dl1AVC6CKs Fu8uokUOpvrwO6XTVOTrVIuiTpPwW/85jYvkRe1G8NNwPCeLenIeH1wQ9DHggD8GfgBNCRyc k32E2ZwxeL/KO6J5GJr12F2ncT33veBjdL4Hu4qBvL49ER9/vkldZjxZdSBSNwuxBQThu+Z9 6qARbKQPlKqr1uWLgA6CSlo4da0GH7olavMuXR0gr8w3TkV4HXcqMXSMa9kFXMhzlbM60iZj 0MslkV+Jxk6mLCjjCN0ZClSxQdCba7eSRHSFiJXjgSQ9K1le0So5fqLegRyrUr3b8AdxuPeV nha4SuJfl4IcnlJMdSgjyh4oP26wbtYy/1OJoONbWE3WQ2T31lyLVk2jHo+7g6HRqdcfkkjA zmyoCyyHiOWbyq8GVQlpors50oeC7+TzWXJdq81KLWy13f1yPRJkNcjC49OGD1aAc5SVmTl7 D0u20W+aHYbACwdZ4xsQWtyPdSDgy3OEJ3kHUkfTB31TjNNMe4gIToBiA5pqD+VCa7rWCXRh YecyC1tQG4j8/XReFjLBvD+YA/LIEYA0xDwURX12bHbx+tZkYPfgHZmE1WB3gvqM1fUa09IX aQHTT5lHkKxKsrxqUSJK7YgliJIiTji2+kbsBv2VI1hcAFMCflPUFDRcTxKOB8Fa+P0aUAKl 2mVWtFW/ic2EVY4t/nooOaERrAga0DB5DxafyNERTSdrt3HGVCo30jr1l6aLDwfGxaeChwfB QBJuwwEVpG9FrBbm01o51EYPC00nz6GAMqSjuJKxah3ZROpreS6kbhQmxA5y0FEualPFmfpA 5XM8t8mt0sInZ5NT7Hv0nBwJZ5rQE0Bavp6dXpIiiNTCAQE/SPMY0EhVe3I16+tp5xacMi1G eeBiPrkg4Ky4OJ+RG//z5XSS9Vt+N4Kl+UTrQ7132oAQi9ENSOsSNhhqnni+xwjXkV2A58SX mqLJgnyxWi90JdGhUrz6S9wEnzoOB6tpKyxPc7xN/uxF4NDYInFmCn5GIxsjznMaUTLz/hXT htxjFILH56fD+/MrFTv4GJkl60dunGGgZ0HNdsQ1w3TLtKn8BOd+NLZRQ+eLcpPyglLQUmYp uTKFmfczTFCmwNKcwGmTz0hRJVVL24202TxbdoLesqoQo1tk6GlBdcAlq2zfXoVCrzTZDGcF ANONV62Y2vJojfI2QqTM9qUwh7MsmYB7jVAFoVwbDJNblTxUMJqIVdlw5pnKvGI3yws45uLj P3gkBMPg1l1uMKvsqnYtKBhKRNTErIwWGpmU5MggS2edAK3i/W9P3l/vHw5PX6moOJ6zmndC +Nnq9a4gijQddXV9/NUXq8ayAgw1+LieTSipTPtH1Q0IWb2OyDduXR8pbelEKUNl5guh8y6F zdEUyYae6oEOjQvy17Hq9K2psF/vD0ieZMATaVzBkvWumhLYRcNTO9a+bu+yybK7LMDqBtSY oHO8HrbLU/G37KGoljYm1r10mQfjB7B+WVAbYECzZUd+Rt+ROKNd1P7ysmMGwA+ZFh2j9ZQq 27uFKZjUpdz7WguxttNqWnCGASuda3wHiX4+VLOBRiR25CMJWWRe6EYAVoklibfZ4AwG/3Vc TfTWs8EDQ8YwXTCzu2zwCyo+vr8fXr7vf+xfCSeSbtezdHV5NbXGUgPFZHbquJUiPHa7C6jB H954ixAVD5IInM21HZGMO/6G8Att194ciZwXyqJtAfRLU8cdSwbzSlTcMBqKTDSOmRdBIDMX Te2EkOomUoNscYVvQb2n3R1SUaNbaY9pk4fE9WeQ07w8YMxZKe9Z85smcHiAxFoBT1C5Z+0a N6CwYXRMWH2Y7YPO1ww47uZ8ynbttLdvwDWg37HWjjhswHUlOKyoxDkkDFJkSdd4yXBHkrN+ 6Ts2nDlFxjwnzn5e9szvw8xvrIcyxXkNmkVTTUjktYzIJvPQjEV+XqRT95fvQgD1FQs5e7al m8McAcZu+AAE0sR5AjRg0Kegj/pQWqWqGSR68tlUOsqZP52Fz8dnANFen+UXLWs5Pi6wurjz uoy/b7rKtnnt6KlDsB3DGX9Xpcx/YvInD+21cBjIjdNe6ki1ZQ3tTrEzfSL6u1qKqTeGIO1I GEG9aP15NhCqmwNOrgH90MNbqQNN06HBEBblbR9kR/KoY31RWCZg3bR0Hdmy32QNX9Km4ZLn Yc9HtjqVhRD13lVl5g0LttLWtWJbGP3Q3f2uIP1CPnys7DRQmN9IvgRzMs0UoB3i45lbH2/J A31WJs1t3UaEJSEHpb11mqtAYfLrEbXoOLB1mDW+KlnbNRk1NksxJMIyh78P4AoA6rB7cbtk CkErbbjR4hgM1y3NfmQETZsyaW2P6a6tlsI9ghXM2yOoyNCLoYLRydmtv6cGKCzClDfIcFNO PhgiKFm+ZbfQBAysb3kmW6S8TLMdiSlx+nc6/zrVniKDQahqZ5iVAnb/8G3v+CUuhTz6SZVL Uyvy9FdQFH9PN6kUAAL+z0V1hVcc9jB/rnJuuzXcAZGN79KlGVNTI12LSvZWid+XrP092+Hf ZUu3A3DePBUCvqQndjNQW1+bREwJyPM1ZhGbnV1SeF7hSw4BHfx0eHuez8+vfp18spf6SNq1 Syp+iOyJJxtEavh4/2s+JDMr22DxSlBwiLroZkvO8tFxVZazt/3Hl+eTv6jxlhzfcVJEwLUb xl7C8Jbd3pgSiAMMUifwCDsit0Qla56njR2UUX3BU4wmv5b8u/MrTvDdTiZcKf06a0q7iZ5b ZVvU7mBKwE9kDkUTk2LW3QoOq4VdiwbJHltHfaai0GZOoGP1TzDJoMltWBMwM2O4DGdpqAXT hSEvUfGYrVZVDSbT8zgdS2kArCALtvSIMsmP/CYboM7Jx0uKy6+9ouB3nXd+9xdZjFsviKHy SS1p8YhE0C14/MukYQVZv7jpmFg7S0xDFAc30vVoAXPQiiUcKVfaUYoa2HK5yumCNIVUy2lr HUXZ16As1vSD4uGDYJGHJHdezhwfn9/NiLHJ7yqyL7u7n9QmWsoAMuBn12iQWcjACHf0cGXF IktT0o4yzk3DVkVWtmr6VFlnlk67iy1HDFq7cxZ0VQQrdF3HPr8pdzNvQwDoIihBA2Oic0NU qmALllxnab+4VSIprat5lAU55EF5VWu9mVHYqlTVEHAo1Dq/ResyDfkbmWGOlgNctI2TekIT wCo6hpzZyPFma0Cvk4GAvgNTlPPZ9F/R4dokCV2yaIP97hphgGx8FZAda5o9FhQ93cKhAZ++ 7P/6fv++/xQQyndzRAPxZWq8goYVxDcLOv7Irdg4G6ILlraC9FvQYyjFoAuNAFlTedvMQEIV acDEOP5AcGd7Ng/Qwa8G5Z2cF7z9YzKIc1m7rZprmkGXXhPx92bq/XasewriCy42cvbHo0c+ 6+mnEA1m0y0j7BC/RJ0pz1YsAbWypNa7IUIZLMuRyG17ygUmTAFdoDaPuL3OUOfOqpEpOkBp rawTBE8Z/yf21qlwiNFrllZXNvYrdvW7X9l7EwAik7D+ulm4wc8UuekGL6UhKkP1HD086JEz H0Xl9SSr1zRzSEA+sacPf0tRmI7wjFhM8bsdW6amy7EHI9U2YxhcvF97GY5dqq5OWCxGDz+y PSQy2FUjNBKLasBjFrRahhY+QviT9lUpi0l2LC70XdX0RJS5vZJz65y0tEELbdTJHtRJ98MB cxnHXJ5HMPPz0yjG8e30cFSYPo/kMv55xHXZI6LPFI+InnmPiPYc8ojoHLMeEf14zSOigpl4 JFeRUb86u4hh3FiG3lfU7nVJZrEq53bQTcRwUeECdHPXOp9M6AiKPs3EL0Cmeo98aGqd0I0J FqNBxOfWUFDBEW38eaxoOtW0TUHnFLYp6LiETocptyuHIDI/E29TX1d83jd+ZySUChCDyIIl KE6z0i0JwUkGCl7il6YwZZt1DXW9OpA0FWu5m6ZswN02PM855R1nSFYsy21vzwHeZPZDQQPm 0FZm51scEGXnBkpy+gztO9KGtmuuuVi7haIlzi4vzWlXlK7kuBGo29eq397YNkvnPlTFONk/ fLwe3v85eX55PzzbqXSQgdl2qVu0CN90mWh77wYOZBvBQRYE9RPIMIirawvRnxMNbBsUNVOv Ln1dMMKHouB3n677CmpkMj0HUSbSSMs9T5hJ4WFkGX3x1qdFJuQjmLbh9m24dZnpQZZUMVoa dlQDPI5aJV+BqsEilx5DETWztVCZNWnNmjQrofd4I4GmcSkVJUyZHUel3Cejrj9ARMW7DVF1 jRMTB+8TE/llAUtnneW1E2qOQqumfvr97c/D0+8fb/vXx+cv+1+/7b+/7F8tW/LQMwELm9bX B5K2Kqpb+v51oGF1zaAVEaOOocorltaR59wD0S0rKGekscVsiQ+ZeEpMtRTQq23Z56L4CbrP WJM7Qqu8TJNorVrAvIBOUFYl7a0WoR9uMIlORD6RWFgmcD7mzromb0MH4HipRp0qdlJr+GEC FvV10vQ83f0xObWKBDxoieh2FimrL1cDhdMYQAm++tnX5gJiKOLT4fH+16evn9ySDBmqDL1Y M1reoyin5zRrpmjPI+k6AtptfU4miw8LLc7cwbaxf3x6ezz7ZGOlSaGvK+Bot/5gNhlLNSpS M+y1hnHbm9SG9pgUGTaj7YVqTz8Tt0WR4YnqnedIBIyjy9TOkOUER7ucbqX1AXvtMZKnZg5I TlkxNo5NBn72qNCBBtR1ZHwoSZGmSu9zMr6qER25A7NzSMJ+/4Tx8748/+fpl3/uH+9/+f58 /+Xl8PTL2/1feyj/8OUXTHb4FdnoL3++/PVJcdbr/evT/vvJt/vXL/sndAUdOawOZPT4/Ip5 Eg/vh/vvh/+9R6ydq4fj+1F8sFw6GWokAh/pIVMYGu+n8lE06PRokZB3MZF2GHS8G0OoGl+E MC3dwSRKc6odjRw5O5rS1U3t6z8v788nD8+v+5Pn1xPFTKyEOpIYerpiTnonGzwN4bDOSWBI Kq4TXq9t1uchwk/kvqOAIWljO0qMMJLQsp16DY+2hMUaf13XIfW17VloSkDDaUgK4ipIMWG5 Gu4GkleojnaTcz8cLE+e35emWi0n03nR5QGi7HIaGDZd/kPMfteuQaokGh4JG2mWAS/CwvAt da9lot38wqzl+uPP74eHX//e/3PyIJf119f7l2//BKu5ESwoMg2XVGb7vQ4wkrBJiSLhLNtk 03OV3Ew97fh4/7Z/ej883L/vv5xkT7KVsGFP/nN4/3bC3t6eHw4Sld6/3wfNTpIiHImkIIY0 WYN6wKanwGpuJ2enZGoqsylXXMCkh9svu+EboqdrBifbxnRoIcOaohj6FjZ3EQ5fslyEsDZc 5wmxODP3UY+G5r6fgouulvQbWo2uoZHxwdkRrQCm6QasM5thbQY7XPopqJ5tF05eJsQ4lOv7 t2+xkSxYOJRrCrijBn2jKJVbzOHr/u09rKFJzqbU5lQI9dYiPlCSijgJAApDnFMnym5HHuOL nF1nU2qiFYY0cg/VtZPTlC/DTaKrCmb/p9ujSGdBaUUaTnHBYWPIp97UIDZFClssXgvi7QQ5 IxgkXwp8Ng2pUaKmgFQRSk4mWgoIMvWXxtqSsIG1IOAsqpDNtqtmchUuCil2D8LH4eWb4/c/ nErhxgNY3xIiCIBLHgaWNeiyW/Aji4Y1yYxcbNUWs0AfWW0MczlzRu0ZJtpIKpCRgMyRq1kR 0ful/Dc8jdbsjhC1BMsFI9aI4QvUzNPPRAZsU6tYCyS8FyKb9ufzC6rggra0D9yfzH6qkdtq yYlTQsOD2zkPfT6KBsnz48vr/u3NEfCH8V7mrkOVZi13VQCbz8Il7birjLB1eBLjdb9pUXP/ 9OX58aT8ePxz/3qy2j/tXz39Y1jCgvdJTYmyabNAp7CyozGaRfhDrnDRizuLKKFv50aKoN7P vG0zDMvRVPUtUTdKqaDO8p/WPxAaPeBfETeRwKU+Heoi8Z5JtR/fJXhK0vfDn6/3oKi9Pn+8 H54IRp3zBXl2Sbg6aUKEZmwm8s4xGhKnNvXRzxUJjRqEVKuEQMhyCOMDh3TU6YVww2xB+kbX qMkxkmN9iYpZY0dHwZckGpii3831luiaa1ORgRjGUi1k3S1yTSO6RZSsrQuaZnd+etUnWaPN 5pl++WQ3s75OxBxTa2wQj6VEX0eZaoZCrCIutXdlrIpLqZLh57Qxl6/Q5l1nyh1RPqfQhv7Q g3z/+o7hckGpeZPZJN8OX5/u3z9e9ycP3/YPfx+evlqP/qq0yzNpcYS6//j0AB+//Y5fAFkP Wt1vL/vHwdamfF/s+4vGeRYR4sUfn2wrucJnuxaf0o7jHjNgV2XKmlu/PppaFQ2bNrnOuWhp YuPE/i+GSI5lHj19GsbTi762YwtqSL8AnRvYQGNdo+FLItb00pXX9XJj8uUI5THLQcqDibbt kiZQGAiAZVLf9stGBmCxF5tNkmdlBFtilLSW2w4SBrXkZQp/NTCEC/dmL6malLxTxMQzWV92 xSKzLYzqsorlYR11wv2HhAblgUVb1Ogqyu17HOlcDgyjX+I7XP3O1YkDJynQqQkOAWDmZdX6 l2KguYByD5zTAU28IwrODqnekMcvNLbtercAVyVDXUxk+RL3dgCHkytb3M69CkdMTISTJKzZ RpPcS4oFmXMHcBcOR3T5Y3JpL9nFoKGOBJbRwtcmYXGnVUH22HbNdKHK1dmFo6syigKugHin GJ0HpV1LEUqV7PmajlDLxdSlJttnO5B6YIp+d4dg/7c2orkwGZWlDmk5s6dNA5kdG3iEtWvY iAFCAN8Jy10knwOYO3Vjh/qV4zhpIRaAmJKY/M6+NbMQu7sIfRWBW903R4V9P2zWICbYEFVe FW60yBGK1+zzCAoqPIKyM/0uEmvhL1AdtwUPTEAC580mg+lomHX9iGcWd2OMKBA6VfbOwYfw 1B68UjZnhcAeDvaVfYEucYjAAER4je0flohjadr0bX8xU8e6OWC3vGpzx/iDxElBv/OTBWFo vYhLu1jlal6sabyxOUBeLdxfxHFR5u7j8SS/Q+eCEYChdEHctMotag7ng3N6LVOryIqnMnAF sEVrPrpETJFTOkKM9EYwa2yTiipceausxRjZ1TJlRBhP/Ka3GYGDaCWvtF+0VajMD461FtQn mv+YBxB7VUrQxY/JxANd/rD9myQIY2/lRIEMmHyp4cOkSww+mehnPygbiqn31CtscvpjEhYk uhKbHSsH0JPpj+nUKws03MnFD3tUBQaxqnJvpcu7wy3LLeFLgtKsruxlD5ugcKNfocMFo30p qsVntiKXu1w79hIeZMxAdHSvR40cLqEvr4en979P7uHLL4/7t6+hWxKIWKXOXOe0WYHRo5a+ iVKe/31erXIQJvPhvu0ySnHT4YvQ2bCxtNoSlDCzXJ3wZls3Jc1yRl20p7clw8wznoe/A+7d N4kguy3w3r7PmgaoLIyihj8gHy8q4WTQiY7lYJM6fN//+n541LL+myR9UPDXcOSzUl7eFR16 gOmwCmZhNtAqGQHgj/nkamovihrTRWIPnOgMLJVlMeFcIK0zjKaOz4lhpeaUyV/1FxQiFGLx rWDBWpsD+RjZJgxgcOs3tq7k22znuJeFK8cZ5WKOWQ79J2dGc/q34ydHW1rYDg9m1af7Pz++ fsXbdP709v768bh/ercD0LAVl49Q7YjtFnC40ldT8gecLhSViltOl6Bjmgv06MN0aZ8+uUPs PHFkkoHDaF6vUodB4m/KamHUkm4hmI6rwO8y5If21xJLDu6/Gi63wcrtyd8ZOoOL7XAxFGad KbivQRfPSuGFelKlIF7yckrlw2+rbenYOaR5o+KiKr1gCC6mLysddIJ+C+US32UN7SunGtlU KWtZ7EJ7mBJFvN35I2VDBu20xacMVr/kb+9w0kBZylL4xQLDyNR9qtdcjRg4RnSzG8Klki0j xchMHdRVi0vmu2u6WAw4vPaMsxFS9Rj1SHgil1yfnYZlTPxiRc6ojSR3nl7fICzncCiFrTeY +HEpvYg64bzmFnCEpxqVlal/oqsvN0UIkTe6rgPwgHKD9Q/gegXK6oqaHW9ZYmrIjgW7OAJW 2ZOks1NY7Zqv1kBwfFBl9zEYxdKJbHEUmSSywdcMj7bAVqzA8lM5y66T1Xj2BAtgjVkrfAum pD+pnl/efjnJnx/+/nhRTGZ9//TVlomYTBELjM6J2OKAMa5VZ1m+FVIK7137x+mgLlTJdYe7 uYV1ayuUolq2IdKRfKRvoE0o66AselFi3crTca6a1KsVt97SZk4BBd0ui/Dn7fKJh3ZZ04aV 9WuMS9wyQXs6b29AAAExJK0omVkaulUtttx2fNKV1z4IHF8+UMqwudloApZ7O6qZSqy+YbJh 8mme3RKqGneP4Pq5zrJasTllKUannJFj/9fby+EJHXWgN48f7/sfe/jP/v3ht99+++9xBSv3 ZSxyJdWI8HVl3cBWNPGF4l7T2IfoQYimha7NdlnApgT0wH34rY8Ymny7VRiZq1O78PvseCuy Is6QZGM9+4B0Is/qsCyNiBbG2gpVB5Fnsa9xUOV9pua2VMNkk2D7oNt3PyhxZiUPPSb49ajq /T/m3lFKW3wkO46ElNphdPquRNcAWK7KpkowP8VhIyfn30p+/HL/fn+CguMD3mzYkQDVAHHX zidFPg30j2l66SmkenVCiyFSGCh7KaKB/NR0MhxWuO0jLXYblzSZ9ukXZteB6EJJtt50Gv0L 5Bw8RYNZRoT9CdlZSdR4Ma0cbHZDBvgx2Z6dpnob60brX43UvMIJUIHJQFbHuxC6fWgXL5Pb tqI2jLyEH5dcaG6S0sGyK5UeKYmaGHbVsHpN0xh1fumtbALZb3m7Rpucr3JRZDokF9o5fHJN VkiZFMrDWyqPBOMa4baSlFID9gtJ9IeqlBGJX0RO5mV8MeChzVPQj9YJn5xdzaTVFOU1+uaS YRaln4iJKtq3fimeOZH+1WsuTROcCD/mF+QOkYMGwpcUUcP1sJtf9Nq4IuWDzg6ZIJ8zKHuP 3RAb3qeLFR0p2aHC5BG7lPQHzZYcJOi2d3UxzX/zxTLvhP+EDKPO+ut7fBxQKdtUf7ojU7da eHd8B0QX2LZCGv9xk7uLpZ0MJS1HM0xqFpVa1Ifo23PrTo62V7iHRS3jiyJfjBbYlVsMW9cQ 9iB9ULkrxrZatvu3d2RwKJYlz/+zf73/urdeTnalfbGgYp0G+vEYAtWHZTu5EUic3L2u+7xh O2gdBPFY5SXg9rVPtZS7Ok5tD12ZtSpENEFHTrkOAGeqpYyvSmUCzSipNnrH1W6ONThs8DoA u4bHDLqVEQXBvvaty0dnJHjEYjwaBrEGBY2CC4xW1adV0mEQJecE+j8kD6N8/e8CAA== --rwEMma7ioTxnRzrJ--