From mboxrd@z Thu Jan 1 00:00:00 1970 Received: from lamorak.hansenpartnership.com (lamorak.hansenpartnership.com [198.37.111.173]) (using TLSv1.2 with cipher ECDHE-RSA-AES256-GCM-SHA384 (256/256 bits)) (No client certificate requested) by smtp.subspace.kernel.org (Postfix) with ESMTPS id 554F1272E42 for ; Tue, 5 Aug 2025 18:34:41 +0000 (UTC) Authentication-Results: smtp.subspace.kernel.org; arc=none smtp.client-ip=198.37.111.173 ARC-Seal:i=1; a=rsa-sha256; d=subspace.kernel.org; s=arc-20240116; t=1754418885; cv=none; b=c3Ekny1VVHljepyaUQXlRi043RsidMXQUIm31d/Csf8wI4a3Ob0JVaVZ8xY/ohpgWz1Le/lboSGHIVuZDOXKPjDmg7AnFp+7NmuYGC2uLYVfxNvrzvoJ57uhLBnOqvCaFmIRIl/fTfE8oCObmzAo+nfrqt1wX8OxYM+iJ05dziY= ARC-Message-Signature:i=1; a=rsa-sha256; d=subspace.kernel.org; s=arc-20240116; t=1754418885; c=relaxed/simple; bh=WMHTKDlr532WsVy9hpi6wdei3kV8OxCypOEoLIqH6BU=; h=Message-ID:Subject:From:To:Cc:Date:In-Reply-To:References: Content-Type:MIME-Version; b=j80IuQxVoveBgcgGvUGPFPQ1Usr+r7faBHAp+vX9J1f8tRxdHpVIi+bn73Ur7a7uW9GghXgwZv/v6kWJ6S/6GDEEv68UelS0b9ufC0b5l7KKYT7PLoqhjdpWLqOteRhXfxBq2PIjOYZcLKJOdSouHpK4ChfH8beI4Iz89V7UZoY= ARC-Authentication-Results:i=1; smtp.subspace.kernel.org; dmarc=pass (p=quarantine dis=none) header.from=HansenPartnership.com; spf=pass smtp.mailfrom=HansenPartnership.com; dkim=pass (1024-bit key) header.d=hansenpartnership.com header.i=@hansenpartnership.com header.b=PAjOwWRf; arc=none smtp.client-ip=198.37.111.173 Authentication-Results: smtp.subspace.kernel.org; dmarc=pass (p=quarantine dis=none) header.from=HansenPartnership.com Authentication-Results: smtp.subspace.kernel.org; spf=pass smtp.mailfrom=HansenPartnership.com Authentication-Results: smtp.subspace.kernel.org; dkim=pass (1024-bit key) header.d=hansenpartnership.com header.i=@hansenpartnership.com header.b="PAjOwWRf" DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/simple; d=hansenpartnership.com; s=20151216; t=1754418881; bh=WMHTKDlr532WsVy9hpi6wdei3kV8OxCypOEoLIqH6BU=; h=Message-ID:Subject:From:To:Date:In-Reply-To:References:From; b=PAjOwWRfkST8Ei+VJ7MnabEbC6GIXfYfU1/z5r2sx/tUv6lgNrTFB2ncPrBZwg1fc rWYfcjk0+ob70KJfkVmxuETFjdC0dfnrJvLOgdPldkHFO/z2S12XEhpNqJphhkhiXz A47rEY71A8Yj5AwKC4hZh2uJ3+/7UiVRI1med60A= Received: from lingrow.int.hansenpartnership.com (c-67-166-174-65.hsd1.va.comcast.net [67.166.174.65]) (using TLSv1.3 with cipher TLS_AES_256_GCM_SHA384 (256/256 bits) key-exchange x25519 server-signature RSA-PSS (2048 bits) server-digest SHA256) (No client certificate requested) by lamorak.hansenpartnership.com (Postfix) with ESMTPSA id DF88C1C0323; Tue, 05 Aug 2025 14:34:40 -0400 (EDT) Message-ID: <2da83ff9881bef84a742c06e502c91178a78a8a3.camel@HansenPartnership.com> Subject: Re: [MAINTAINERS SUMMIT] The role of AI and LLMs in the kernel process From: James Bottomley To: Lorenzo Stoakes Cc: ksummit@lists.linux.dev Date: Tue, 05 Aug 2025 14:34:40 -0400 In-Reply-To: References: <56e85d392471beea3322d19bde368920ba6323b6.camel@HansenPartnership.com> Autocrypt: addr=James.Bottomley@HansenPartnership.com; prefer-encrypt=mutual; keydata=mQENBE58FlABCADPM714lRLxGmba4JFjkocqpj1/6/Cx+IXezcS22azZetzCXDpm2MfNElecY3qkFjfnoffQiw5rrOO0/oRSATOh8+2fmJ6el7naRbDuh+i8lVESfdlkoqX57H5R8h/UTIp6gn1mpNlxjQv6QSZbl551zQ1nmkSVRbA5TbEp4br5GZeJ58esmYDCBwxuFTsSsdzbOBNthLcudWpJZHURfMc0ew24By1nldL9F37AktNcCipKpC2U0NtGlJjYPNSVXrCd1izxKmO7te7BLP+7B4DNj1VRnaf8X9+VIApCi/l4Kdx+ZR3aLTqSuNsIMmXUJ3T8JRl+ag7kby/KBp+0OpotABEBAAG0N0phbWVzIEJvdHRvbWxleSA8SmFtZXMuQm90dG9tbGV5QEhhbnNlblBhcnRuZXJzaGlwLmNvbT6JAVgEEwEIAEICGwMGCwkIBwMCBhUIAgkKCwQWAgMBAh4BAheAAhkBFiEE1WBuc8i0YnG+rZrfgUrkfCFIVNYFAmBLmY0FCRs1hL0ACgkQgUrkfCFIVNaEiQgAg18F4G7PGWQ68xqnIrccke7Reh5thjUz6kQIii6Dh64BDW6/UvXn20UxK2uSs/0TBLO81k1mV4c6rNE+H8b7IEjieGR9frBsp/+Q01JpToJfzzMUY7ZTDV1IXQZ+AY9L7vRzyimnJHx0Ba4JTlAyHB+Ly5i4Ab2+uZcnNfBXquWrG3oPWz+qPK88LJLya5Jxse1m1QT6R/isDuPivBzntLOooxPk+Cwf5sFAAJND+idTAzWzslexr9j7rtQ1UW6FjO4CvK9yVNz7dgG6FvEZl6J/HOr1rivtGgpCZTBzKNF8jg034n49zGfKkkzWLuXbPUOp3/oGfsKv8pnEu1c2GbQpSmFtZXMgQm90dG9tbGV5IDxqZWpiQGxpbnV4LnZuZXQuaWJtLmNvbT6JAVYEEwEIAEACGwMHCwkIBwMCAQYVC AIJCgsEFgIDAQIeAQIXgBYhBNVgbnPItGJxvq2a34FK5HwhSFTWBQJgS5mXBQkbNYS9AAoJEIFK5HwhSFTWEYEH/1YZpV+1uCI2MVz0wTRlnO/3OW/xnyigrw+K4cuO7MToo0tHJb/qL9CBJ2ddG6q+GTnF5kqUe87t7M7rSrIcAkIZMbJmtIbKk0j5EstyYqlE1HzvpmssGpg/8uJBBuWbU35af1ubKCjUs1+974mYXkfLmS0a6h+cG7atVLmyClIc2frd3o0zHF9+E7BaB+HQzT4lheQAXv9KI+63ksnbBpcZnS44t6mi1lzUE65+Am1z+1KJurF2Qbj4AkICzJjJa0bXa9DmFunjPhLbCU160LppaG3OksxuNOTkGCo/tEotDOotZNBYejWaXN2nr9WrH5hDfQ5zLayfKMtLSd33T9u0IUphbWVzIEJvdHRvbWxleSA8amVqYkBrZXJuZWwub3JnPokBVQQTAQgAPwIbAwYLCQgHAwIGFQgCCQoLBBYCAwECHgECF4AWIQTVYG5zyLRicb6tmt+BSuR8IUhU1gUCYEuZmAUJGzWEvQAKCRCBSuR8IUhU1gacCAC+QZN+RQd+FOoh5g884HQm8S07ON0/2EMiaXBiL6KQb5yP3w2PKEhug3+uPzugftUfgPEw6emRucrFFpwguhriGhB3pgWJIrTD4JUevrBgjEGOztJpbD73bLLyitSiPQZ6OFVOqIGhdqlc3n0qoNQ45n/w3LMVj6yP43SfBQeQGEdq4yHQxXPs0XQCbmr6Nf2p8mNsIKRYf90fCDmABH1lfZxoGJH/frQOBCJ9bMRNCNy+aFtjd5m8ka5M7gcDvM7TAsKhD5O5qFs4aJHGajF4gCGoWmXZGrISQvrNl9kWUhgsvoPqb2OTTeAQVRuV8C4FQamxzE3MRNH25j6s/qujtCRKYW1lcyBCb3R0b21sZXkgPGplamJAbGludXguaWJtLmNvbT6JAVQEEwEIAD 4CGwMFCwkIBwIGFQoJCAsCBBYCAwECHgECF4AWIQTVYG5zyLRicb6tmt+BSuR8IUhU1gUCYEuZmQUJGzWEvQAKCRCBSuR8IUhU1kyHB/9VIOkf8RapONUdZ+7FgEpDgESE/y3coDeeb8jrtJyeefWCA0sWU8GSc9KMcMoSUetUreB+fukeVTe/f2NcJ87Bkq5jUEWff4qsbqf5PPM+wlD873StFc6mP8koy8bb7QcH3asH9fDFXUz7Oz5ubI0sE8+qD+Pdlk5qmLY5IiZ4D98V239nrKIhDymcuL7VztyWfdFSnbVXmumIpi79Ox536P2aMe3/v+1jAsFQOIjThMo/2xmLkQiyacB2veMcBzBkcair5WC7SBgrz2YsMCbC37X7crDWmCI3xEuwRAeDNpmxhVCb7jEvigNfRWQ4TYQADdC4KsilPfuW8Edk/8tPtCVKYW1lcyBCb3R0b21sZXkgPEpCb3R0b21sZXlAT2Rpbi5jb20+iQEfBDABAgAJBQJXI+B0Ah0gAAoJEIFK5HwhSFTWzkwH+gOg1UG/oB2lc0DF3lAJPloSIDBW38D3rezXTUiJtAhenWrH2Cl/ejznjdTukxOcuR1bV8zxR9Zs9jhUin2tgCCxIbrdvFIoYilMMRKcue1q0IYQHaqjd7ko8BHn9UysuX8qltJFar0BOClIlH95gdKWJbK46mw7bsXeD66N9IhAsOMJt6mSJmUdIOMuKy4dD4X3adegKMmoTRvHOndZQClTZHiYt5ECRPO534Lb/gyKAKQkFiwirsgx11ZSx3zGlw28brco6ohSLMBylna/Pbbn5hII86cjrCXWtQ4mE0Y6ofeFjpmMdfSRUxy6LHYd3fxVq9PoAJTv7vQ6bLTDFNa0KkphbWVzIEJvdHRvbWxleSA8SkJvdHRvbWxleUBQYXJhbGxlbHMuY29tPokBHwQwAQIACQUCVyPgjAIdIAAKCRCBSuR8IUhU1tXiB/9D9OOU8qB CZPxkxB6ofp0j0pbZppRe6iCJ+btWBhSURz25DQzQNu5GVBRQt1Us6v3PPGU1cEWi5WL935nw+1hXPIVB3x8hElvdCO2aU61bMcpFd138AFHMHJ+emboKHblnhuY5+L1OlA1QmPw6wQooCor1h113lZiBZGrPFxjRYbWYVQmVaM6zhkiGgIkzQw/g9v57nAzYuBhFjnVHgmmu6/B0N8z6xD5sSPCZSjYSS38UG9w189S8HVr4eg54jReIEvLPRaxqVEnsoKmLisryyaw3EpqZcYAWoX0Am+58CXq3j5OvrCvbyqQIWFElba3Ka/oT7CnTdo/SUL/jPNobtCxKYW1lcyBCb3R0b21sZXkgPGplamJAaGFuc2VucGFydG5lcnNoaXAuY29tPokBVwQTAQgAQRYhBNVgbnPItGJxvq2a34FK5HwhSFTWBQJjg2eQAhsDBQkbNYS9BQsJCAcCAiICBhUKCQgLAgQWAgMBAh4HAheAAAoJEIFK5HwhSFTWbtAH/087y9vzXYAHMPbjd8etB/I3OEFKteFacXBRBRDKXI9ZqK5F/xvd1fuehwQWl2Y/sivD4cSAP0iM/rFOwv9GLyrr82pD/GV/+1iXt9kjlLY36/1U2qoyAczY+jsS72aZjWwcO7Og8IYTaRzlqif9Zpfj7Q0Q1e9SAefMlakI6dcZTSlZWaaXCefdPBCc7BZ0SFY4kIg0iqKaagdgQomwW61nJZ+woljMjgv3HKOkiJ+rcB/n+/moryd8RnDhNmvYASheazYvUwaF/aMj5rIb/0w5p6IbFax+wGF5RmH2U5NeUlhIkTodUF/P7g/cJf4HCL+RA1KU/xS9o8zrAOeut2+4UgRaZ7bmEwgqhkjOPQMBBwIDBH4GsIgL0yQij5S5ISDZmlR7qDQPcWUxMVx6zVPsAoITdjKFjaDmUATkS+l5zmiCrUBcJ6MBavPiYQ4kqn4/xwaJAbMEGAEIACYCGwIWIQTVYG5zyLRi cb6tmt+BSuR8IUhU1gUCZag0LwUJDwLkSQCBdiAEGRMIAB0WIQTnYEDbdso9F2cI+arnQslM7pishQUCWme25gAKCRDnQslM7pishdi9AQDyOvLYOBkylBqiTlJrMnGCCsWgGZwPpKq3e3s7JQ/xBAEAlx29pPY5z0RLyIDUsjf9mtkSNTaeaQ6TIjDrFa+8XH8JEIFK5HwhSFTWkasH/j7LL9WH9dRfwfTwuMMj1/KGzjU/4KFIu4uKxDaevKpGS7sDx4F56mafCdGD8u4+ri6bJr/3mmuzIdyger0vJdRlTrnpX3ONXvR57p1JHgCljehE1ZB0RCzIk0vKhdt8+CDBQWfKbbKBTmzA7wR68raMQb2D7nQ9d0KXXbtr7Hag29yj92aUAZ/sFoe9RhDOcRUptdYyPKU1JHgJyc0Z7HwNjRSJ4lKJSKP+Px0/XxT3gV3LaDLtHuHa2IujLEAKcPzTr5DOV+xsgA3iSwTYI6H5aEe+ZRv/rA4sdjqRiVpo2d044aCUFUNQ3PiIHPAZR3KK5O64m6+BJMDXBvgSsMy4VgRaZ7clEggqhkjOPQMBBwIDBMfuMuE+PECbOoYjkD0Teno7TDbcgxJNgPV7Y2lQbNBnexMLOEY6/xJzRi1Xm/o9mOyZ+VIj8h4G5V/eWSntNkwDAQgHiQE8BBgBCAAmAhsMFiEE1WBuc8i0YnG+rZrfgUrkfCFIVNYFAmWoNBwFCQ8C4/cACgkQgUrkfCFIVNZs4AgAnIjU1QEPLdpotiy3X01sKUO+hvcT3/Cd6g55sJyKJ5/U0o3f8fdSn6MWPhi1m62zbAxcLJFiTZ3OWNCZAMEvwHrXFb684Ey6yImQ9gm2dG2nVuCzr1+9gIaMSBeZ+4kUJqhdWSJjrNLQG38GbnBuYOJUD+x6oJ2AT10/mQfBVZ3qWDQXr/je2TSf0OIXaWyG6meG5yTqOEv0eaTH22yBb1nbodoZkmlMMb56jzRGZuorhFE06 N0Eb0kiGz5cCIrHZoH10dHWoa7/Z+AzfL0caOKjcmsnUPcmcrqmWzJTEibLA81z15GBCrldfQVt+dF7Us2kc0hKUgaWeI8Gv4CzwLkCDQRUdhaZARAApeF9gbNSBBudW8xeMQIiB/CZwK4VOEP7nGHZn3UsWemsvE9lvjbFzbqcIkbUp2V6ExM5tyEgzio2BavLe1ZJGHVaKkL3cKLABoYi/yBLEnogPFzzYfK2fdipm2G+GhLaqfDxtAQ7cqXeo1TCsZLSvjD+kLVV1TvKlaHS8tUCh2oUyR7fTbv6WHi5H8DLyR0Pnbt9E9/Gcs1j11JX+MWJ7jset2FVDsB5U1LM70AjhXiDiQCtNJzKaqKdMei8zazWS50iMKKeo4m/adWBjG/8ld3fQ7/Hcj6Opkh8xPaCnmgDZovYGavw4Am2tjRqE6G6rPQpS0we5I6lSsKNBP/2FhLmI9fnsBnZC1l1NrASRSX1BK0xf4LYB2Ww3fYQmbbApAUBbWZ/1aQoc2ECKbSK9iW0gfZ8rDggfMw8nzpmEEExl0hU6wtJLymyDV+QGoPx5KwYK/6qAUNJQInUYz8z2ERM/HOI09Zu3jiauFBDtouSIraX/2DDvTf7Lfe1+ihARFSlp64kEMAsjKutNBK2u5oj4H7hQ7zD+BvWLHxMgysOtYYtwggweOrM/k3RndsZ/z3nsGqF0ggct1VLuH2eznDksI+KkZ3Bg0WihQyJ7Z9omgaQAyRDFct+jnJsv2Iza+xIvPei+fpbGNAyFvj0e+TsZoQGcC34/ipGwze651UAEQEAAYkBHwQoAQIACQUCVT6BaAIdAwAKCRCBSuR8IUhU1p5QCAC7pgjOM17Hxwqz9mlGELilYqjzNPUoZt5xslcTFGxj/QWNzu0K8gEQPePnc5dTfumzWL077nxhdKYtoqwm2C6fOmXiJBZx6khBfRqctUvN2DlOB6dFf5I+1QT9TRBvceGzw01E4Gi0xjWKAB6OII MAdnPcDVFzaXJdlAAJdjfg/lyJtAyxifflG8NnXJ3elwGqoBso84XBNWWzbc5VKmatzhYLOvXtfzDhu4mNPv/z7S1HTtRguI0NlH5RVBzSvfzybin9hysE3/+r3C0HJ2xiOHzucNAmG03aztzZYDMTbKQW4bQqeD5MJxT68vBYu8MtzfIe41lSLpb/qlwq1qg0iQElBBgBAgAPBQJUdhaZAhsMBQkA7U4AAAoJEIFK5HwhSFTW3YgH/AyJL2rlCvGrkLcas94ND9Pmn0cUlVrPl7wVGcIV+6I4nrw6u49TyqNMmsYam2YpjervJGgbvIbMzoHFCREi6R9XyUsw5w7GCRoWegw2blZYi5A52xe500+/RruG//MKfOtVUotu3N+u7FcXaYAg9gbYeGNZCV70vI+cnFgq0AEJRdjidzfCWVKPjafTo7jHeFxX7Q22kUfWOkMzzhoDbFg0jPhVYNiEXpNyXCwirzvKA7bvFwZPlRkbfihaiXDE7QKIUtQ10i5kw4C9rqDKwx8F0PaWDRF9gGaKd7/IJGHJaac/OcSJ36zxgkNgLsVX5GUroJ2GaZcR7W9Vppj5H+C4UgRkuRyTEwgqhkjOPQMBBwIDBOySomnsW2SkApXv1zUBaD38dFEj0LQeDEMdSE7bm1fnrdjAYt0f/CtbUUiDaPodQk2qeHzOP6wA/2K6rrjwNIWJAT0EGAEIACcDGyAEFiEE1WBuc8i0YnG+rZrfgUrkfCFIVNYFAmWoM/gFCQSxfmUACgkQgUrkfCFIVNZhTgf/VQxtQ5rgu2aoXh2KOH6naGzPKDkYDJ/K7XCJAq3nJYEpYN8G+F8mL/ql0hrihAsHfjmoDOlt+INa3AcG3v0jDZIMEzmcjAlu7g5NcXS3kntcMHgw3dCgE9eYDaKGipUCubdXvBaZWU6AUlTldaB8FE6u7It7+UO+IW4/L+KpLYKs8V5POInu2rqahlm7vgxY5iv4Txz4EvCW2e4dAlG 8mT2Eh9SkH+YVOmaKsajgZgrBxA7fWmGoxXswEVxJIFj3vW7yNc0C5HaUdYa5iGOMs4kg2ht4s7yy7NRQuh7BifWjo6BQ6k4S1H+6axZucxhSV1L6zN9d+lr3Xo/vy1unzA== Content-Type: text/plain; charset="UTF-8" Content-Transfer-Encoding: quoted-printable User-Agent: Evolution 3.50.3 Precedence: bulk X-Mailing-List: ksummit@lists.linux.dev List-Id: List-Subscribe: List-Unsubscribe: MIME-Version: 1.0 On Tue, 2025-08-05 at 18:55 +0100, Lorenzo Stoakes wrote: > On Tue, Aug 05, 2025 at 12:43:38PM -0400, James Bottomley wrote: > > On Tue, 2025-08-05 at 17:03 +0100, Lorenzo Stoakes wrote: > > > Unavoidably, LLMs are the hot topic in tech right now, and are > > > here to stay. > > >=20 > > > This poses unique problems: > > >=20 > > > * Never before have people been able to generate as much content > > > that may, on a surface reading, seem valid whilst in reality > > > being quite the opposite. > > >=20 > > > * Equally, LLM's can introduce very subtle mistakes that humans > > > find difficult to pick up upon - humans implicitly assume that > > > the classes of errors they will encounter are the kinds other > > > humans would make - AI defeats that instinct. > >=20 > > Do you have any examples of this?=C2=A0 I've found the opposite to be > > true: >=20 > Sure - Steven encountered this in [1]. >=20 > As he says there: >=20 > "If I had known, I would have examined the patch a little more > thoroughly, =C2=A0and would have discovered a very minor mistake in the > patch." Heh, well now you make me look it seems that the minor mistake is adding at tail instead of head? That seems to be because the hash list API doesn't have a head add ... I wouldn't really call that a subtle problem because the LLM would have picked up the head to tail conversion if we'd had an at head API for it to learn from. > The algorithm is determining likely output based on statistics, and > therefore density of input. Since in reality one can write infinite > programs, it's mathematically inevitable that an LLM will have to > 'infer' answers. >=20 > That inference has no basis in dynamics, that is a model of reality > that it can use to determine answers, rather it will, in essence, > provide a random result. >=20 > If there is a great deal of input (e.g. C programs), then that > inference is > likely to manifest in very subtle errors. See [2] for a thoughtful > exploration from an AI expert on the topic of statistics vs. > dynamics, and [3] for a broader exploration of the topic from the > same author. Amazingly enough when you're trying to sell a new thing, you become very down on what you see as the old thing (bcachefs vs btrfs ...?) >=20 > [1]: > https://lore.kernel.org/workflows/20250724194556.105803db@gandalf.loc > al.home/ > [2]:https://blog.piekniewski.info/2016/11/01/statistics-and-dynamics/ > [3]:https://blog.piekniewski.info/2023/04/09/ai-reflections/ >=20 [...] > > > * The kernel is uniquely sensitive to erroneous (especially > > > subtly erroneous) code - even small errors can be highly > > > consequential. We use a programming language that can almost be > > > defined by its lack of any kind =C2=A0 of safety, and in some > > > subsystems patches are simply taken if no obvious problems exist, > > > making us rather vulnerable to this. > >=20 > > I think that's really overlooking the fact that if properly trained > > (a somewhat big *if* depending on the model) AI should be very good > > at writing safe code in unsafe languages.=C2=A0 However it takes C > > specific >=20 > I fundamentally disagree. >=20 > The consequences of even extremely small mistakes can be very serious > in C, as the language does little to nothing for you. >=20 > No matter how much data it absorbs it cannot span the entire space of > all possible programs or even anywhere close. Neither can a human and we get by on mostly pattern matching ourselves ... > I mean again, I apply the arguments above as to why I feel this is > _fundamental_ to the approach. >=20 > Kernel code is also very specific and has characteristics that render > it different from userland. We must consider a great many more things > that would be handled for us were we userland - interrupts, the > context we are in, locks of all varieties, etc. etc. >=20 > While there's a lot of kernel code (~10's of millions of line), for > an LLM that is very small, and we simply cannot generate more. >=20 > Yes it can eat up all the C it can, but that isn't quite the same. You seem to be assuming training is simply dump the data corpus and let the model fend for itself. It isn't it's a more painstaking process that finds the mistakes in the output and gets the model to improve itself ... it is more like human teaching. I'm not saying current AI is perfect, but I am saying that most of the issues with current AI can be traced to training problems which can be corrected in the model if anyone cares enough to do it. The useful signal is that in all badly trained models I've seen the AI confidence score is really low because of the multiple matches in different areas that proper training would separate. THat's why I think AI confidence score should be the first thing we ask for. Regards, James